期刊文献+

积分—水平集求全局最优的遗传算法实现

Genetic Algorithm for Integral-level Set Global Optimization
下载PDF
导出
摘要 在ChewSooHong等提出的一个积分──水平集求全局最优的概念性算法及Monte Carlo随机取点的实现途径的基础上,利用遗传算法给出了这一算法的另一种实现途径,并从理论和数值两个方面验证了算法的可行性. A theoretical algorithm for the integral-level set global optimization is proposed by Chew Soo Hong,et al,and the Monte-Carlo implementation of the algorithm is discussed.Based on the algorithm, another implementation approach is proposed by using the genetic algorithm. The proposed algorithm is varified to be efficient by some numerical results.
出处 《长沙电力学院学报(自然科学版)》 2004年第3期8-11,共4页 JOurnal of Changsha University of electric Power:Natural Science
关键词 全局收敛性 最优 水平集 遗传算法 global convergence optimization level set genetic algorithm
  • 相关文献

参考文献8

  • 1Chew Soo Hong, Zheng Quan. Integral Global Optimization:Theory,lmplementation and ApplicafionsC M]. Berlin Heidelberg: Springer-Vedag,1988.
  • 2Dong-Guang Li, Clifton Smith. A New Global Optimization Algorithm Based on Latin Square Theory[A]. Proceedings of IEEE Inmrnational Conference on Evolutionary Computation[C], Japan, 1996,628-630.
  • 3Xin Yao, Yong Liu, Guangming Lin. Evolutionary Programming Made Faser[J]. IEEE Transactions on Evolutionary Computer, 1999, 3(2):82-102.
  • 4Cnstillo P A,Romero G. Statistical Analysis of the Main Parameters Improved in the Design of a Genetic Algorithm[J]. IEEE Trans on Systems, Man and Cybernetics, Part C, 2002,32(1):105-110.
  • 5Randy L, Haupt, Sue Ellen Haupt. Practical Genetic Algorithms[M].John Wiley & Sons Inc, 1998.
  • 6Bruno Saueni, Laurent Krahenbld. Fimess Sharing and Niching Methods Revlsted[J]. IEEE Trans on Evolutionary Computation, 1998,2(12):97-106.
  • 7Kushehu I. Genetic Programming and Evolutionary Generalization[J].IEEE Trans on Evolutionary Computation, 2002,6(5):431-442.
  • 8Therry Van Belle, David H, Acldey. Uniform Subtree Mutation[A].Proceeding of the 5th European Conference [ C ], Europ, Kinsale, Ireland, 2002,152-161.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部