期刊文献+

加工过程中基于最大熵的神经网络控制 被引量:1

Maximum-entropy based neural network control of machining process
下载PDF
导出
摘要 切削过程恒力控制对于提高生产率、保证加工精度至关重要 ,本文将信息理论与神经网络理论相结合 ,提出了恒力切削过程中基于最大熵的神经网络控制 ,与自适应神经网络控制相比 ,具有收敛快 。 It is important of constant force control in cutting process for improving productivity and ensuring precision. The information theory and neural network theory are combined in this paper to propose maximum-entropy based neural network control of constant force in cutting process. The proposed control is of faster convergence and less vibration comparing with self-adaptive neural network control.
作者 张毅 姚锡凡
出处 《组合机床与自动化加工技术》 北大核心 2004年第9期32-33,47,共3页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金资助项目 (50 1 750 2 9) 教育部留学回国人员科研启动基金资助项目
关键词 加工 神经网络 智能控制 machining entropy neural network intelligent control
  • 相关文献

参考文献9

  • 1Lin Yuan, Kesavan H K. Minimum Entropy and Information Measure[J]. IEEE Trans. Syst., Man, Cybern., 1998, 28(3): 489- 491
  • 2Zaborszky J. An Information Theory Viewpoint for the General Identification Problem[J]. IEEE Trans on AC, 1966, 11(1): 130-131
  • 3Matsushima K Stata T. Development of Intelligent Machine Tool[J]. J.Faculty Eng, Univ. Tokyo, 1980; 35(3): 293- 314.
  • 4Saridis G N Entropy Formation of Optimal and Adaptive Control[J].IEEE Trans on Auto Contr, 1988, 33(8): 713 - 721
  • 5KlirG J. The Many Faces of Uncertainty. B M. Ayyub and M M.Gupta. (Eds.), Uncertainty Modeling and Analysis: Theory and Applications[M]. North-Holland: Elsevier Science B V, 1994:3- 19
  • 6Dameshmend L K, Pak H A. Model reference adaptive control of cutting in milling [ M]. Donath M. Dynamic Systems: Modeling and Control, New York: ASME Press, 1985:43 - 50
  • 7Huang S J, Chiou K C. The application of neural networks in self-tuning constant force control [ J ]. Int J Mach Tools Manufact,1996, 36(1): 17 - 31
  • 8Jaynes E T. Information Theory and Statistical Mechanics [ J ].Phys. Rev., 1957,Vol.106:620-630
  • 9田玉楚,符雪桐,孙优贤,吕勇哉,席裕庚,张钟俊.复杂系统与宏观信息熵方法[J].系统工程理论与实践,1995,15(8):62-68. 被引量:11

二级参考文献7

共引文献10

同被引文献17

  • 1陈统坚,王卫平,周泽华.铣削过程的约束型智能控制研究[J].华南理工大学学报(自然科学版),1994,22(4):90-96. 被引量:8
  • 2王立岩,聂建华.加工过程的神经网络自适应控制[J].安徽工业大学学报(自然科学版),2006,23(2):178-181. 被引量:3
  • 3Rodolfo Haber-Guerra, Rodolfo Haber-Haber, Jose R. AI- ique. Controlling Force Based on Radial Fuzzy Functions in High-Speed Machining Processes[ C ]. IWANN 2005, LNCS 3512, 2005:1230 - 1237.
  • 4S. - J. I-luang, Control of End C. - Y. Shy. Fuzzy Logic for Constant Force Milling[ J]. IEEE Transactions on Industrial Electronics. 1999,46(1) :169 - 176.
  • 5Chengying Xu, Yung C. Shin. An Adaptive Fuzzy Controller for Constant Cutting Force in End-Milling. Processes [ J]. Journal of Manufacturing Science and Engineering. 2005, 130(3) :0310011-03100110.
  • 6R. E. Haber, R. M. del Toro, and A. Gajate. Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process[ J]. Information Sciences, 2010, 180:2777 - 2792.
  • 7Ruey-Jing Lian. Intelligent control of a constant turning force system with fixed metal removal rate[J]. Applied Soft Com- puting, 2012,12(9) :3099 -3111.
  • 8Zhang Junhong, Ni Guangjian, and Zhang Jianping. Neural network based PID control on NC milling process with high- speed[ C ]. International Technology and Innovation Con- ference, 2006:551 - 555.
  • 9Gomes, L. , Sousa, A. Control of Milling Machine Cutting Force Using Artificial Neural Networks[ C]. 2011 6th Ibe- rian Conference on Information Systems and Technologies (CISTI) ,2011:1 -6.
  • 10U. Zuperl, F. Cus, M. Reibenschuh. Neural control strat- egy of constant cutting force system in end milling[ J]. Ro- botics and Computer-Integrated Manufacturing, 2011, 27 (3) :485 -493.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部