期刊文献+

一类矩阵方程的对称解与反对称解 被引量:2

Symmetric and Anti-symmetric Solutions of One Class Matrix Equation
下载PDF
导出
摘要 讨论了矩阵方程AX±XAT=D(A为正规矩阵)及AX±XAT=0的对称解和反对称解,并给出了有解的条件及解的通式。 The following matrix equation is considered:WTAX±XA^T=D(where A is normal matrix) and AX±XA^T=0,the conditions for the existence of symmetric and anti-symmetric solutions are studied,the explicit solutions of the equations are also given.
作者 臧正松
出处 《华东船舶工业学院学报》 2004年第4期41-45,共5页 Journal of East China Shipbuilding Institute(Natural Science Edition)
关键词 矩阵方程 矩阵分解 对称解 反对称解 matrix equation matrix decomposition symmetric solution anti-symmetric solution
  • 相关文献

参考文献4

  • 1KUCERA V.The matrix equation AX+XB=C [J].SIAM J Appl Math,1974,26:15-25.
  • 2FLANDERS H,WIMMER H K.On the matrix equation AX-XB=C and AX-YB=C [J].SIAM J Appl Math,1977,32:707-710.
  • 3JAMESON A,KREINDLER E,LANCASTOR P.Symmetric,positive semidefinite,and positive definite real solutions of AX=XAT and AX=YB[J].Linear Algebra Appl,1992,160:189-215.
  • 4BRADEN H W.The equations ATX±XTA=B[J].SIAM Matrix Anal Appl,1998,20:295-302.

同被引文献7

  • 1刘爱晶,程学翰.线性矩阵方程组的对称矩阵解[J].曲阜师范大学学报(自然科学版),2006,32(1):49-52. 被引量:4
  • 2Adi Ben-Israel Thomad, Grevill N E. Generalized inverses theory and applications[ M]. 1974.
  • 3Horn R A, Johnson C R. Topics in matrix analysis[M]. The Cambridge Univ,1985.
  • 4Henk Don F J. On the Symmetric Solutions of a Linear matrix equation[ J]. Linear Algebra and Its Applications, 1987,93 :, 1-7.
  • 5A.Jameson,E.Kreindler,P.Lancaster.Symmetric,positive semedefinite,and positive real solutions of AX=XAT and AX=YB[J].Linear Algebra Appl.,1992,160:189-215.
  • 6Stewart G W.Introduction to Matrix Computations[M].New York:Academic press,1973.
  • 7P.Lancaster,M.Tismenetsky.The Theory of Matrices[M].2nd ed.Academic.Orlando Fla,1985.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部