期刊文献+

机械牵张加重模拟缺血缺氧心肌细胞损伤的研究 被引量:2

Mechanical stretch aggravates cardiomyocyte injury caused by ischemia/hypoxia
下载PDF
导出
摘要 目的 验证机械牵张加重模拟缺血缺氧对心肌细胞的损伤效应。方法 利用所建立的心肌细胞体外牵张模型 ,模拟施加缺血缺氧因素 ,观察心肌细胞形态、培养液中乳酸脱氢酶 (LDH)含量及碘化丙啶 (PI)染色阳性细胞比例的变化。结果  10 %牵张后 ,心肌细胞形态完整 ,LDH及PI染色阳性细胞比例无明显变化。模拟缺血缺氧后形态明显破坏 ,LDH及PI染色阳性细胞比例显著增加。牵张复合模拟缺血缺氧后 ,细胞形态破坏加剧 ,LDH含量急剧上升 ,PI染色阳性细胞比例进一步显著增加 (P <0 .0 1)。结论 机械牵张加剧了模拟缺血缺氧对心肌细胞的损伤效应 ,提示严重烧伤早期过多过快补液导致心脏前负荷的迅速增加对心肌组织产生牵拉可能会加剧业已存在的心肌细胞损伤 ,从而进一步促进了心肌损害的发生。 Objective To clarify if mechanical stretch aggravates cardiomyocyte injury caused by ischemia/ hypoxia. Methods Cardiomyocytes were cultured in vitro and a uniaxial static mechanical stretch device was successfully manufactured. Lactate dehydrogenase (LDH) leaking, ratio of propidium iodide (PI) staining positive cells, and cardiomyocyte morphology were observed to test the effects of mechanical stretch cardiomyocytes exposed to simulated ischemia/hypoxia. Results Mechanical stretch (10%) resulted in no obvious changes of morphology of cardiomyocytes, LDH leakage and ratio of PI staining positive cells ( P >0.05). When mechanical stretch and simulated ischemia/hypoxia were imposed on cardiomyocytes simultaneously, LDH leakage and ratio of PI staining positive cells increased greatly and cell morphology changed obviously ( P <0.01). Conclusion Mechanical stretch may aggravate cardiomyocyte injury caused by ischemia/hypoxia, which may be another pathological cause of shock heart.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2004年第17期1557-1560,共4页 Journal of Third Military Medical University
基金 国家杰出青年科学基金资助项目 ( 30 12 50 4 0 ) 国家重点基础研究发展规划资助项目 ("973"项目 ) (G1990 54 2 0 2 ) 创伤烧伤复合伤国家重点实验室开放课题基金资助项目 ( 2 0 0 30 4 )~~
关键词 心肌细胞 机械牵张 缺血/缺氧 cardiomyocyte mechanical stretch ischemia/hypoxia
  • 相关文献

参考文献10

  • 1Huang Y S, Li Z Q, Yang Z C. Roles of ischemia and hypoxia and the molecular pathogenesis of post-bum cardiac shock[J]. Bums, 2003, 29(8):828 - 833.
  • 2Chlopcikova S, Psotova J, Miketova P. Neonatal rat cardiomyocytes-a model for the study of morphological, biochemical and electrophysiological characteristics of the heart [ J ]. Biomed Pap Med Fac Univ Palacky Olomuc Czech Repub, 2001, 145(2):49-55.
  • 3Jun-ichi Sadoshima, Lothar Jahn, Toshiyuki Takahashi. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells[J]. J Biol Chem, 1992, 267(15): 10551 - 10560.
  • 4Katrina Mackay, Daria Mochly-Resen. Arachidonic acid protects neonatal rat cardiac myocytes from ischaemic injury through protein kinase C[J].Cardiovas Res, 2001, 50( 1 ): 65 - 74.
  • 5Yue T L, Wang C, Gu J L. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerated reperfusion injury in isolated peffusod heart [J].Circ Res, 2000, 86(6): 692- 699.
  • 6Katrina M, Daria M R. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia[J]. J Biol Chem, 1999,274(10): 6272 - 6279.
  • 7Mann D L, Kent R L, Cooper G. Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation[J]. Circ Res,1989, 64(6): 1079 - 1090.
  • 8Monika Hiiser, Emilia Stegemann, Helmut Kamrnermeier. Is enzyme release a sign of irreversible injury of cardiomyocytes[J]? Life Sci, 1996, 58 (7): 545-550.
  • 9Skobel E, Kammermeier H. Relation between enzyme release and irreversible cell injury of the heart under the influence of cytoskeleton modulating agents[J]. Biochim Biophys Acta, 1997, 1362(2-3): 128-134.
  • 10Cavalli A L, Ligutti J A, Gellings N M. The Role of TNFα and sphingolipid signaling in cardiac hypoxia: evidence that cardiomyocytes release TNFα and sphingosine[J]. Basic Appl Myol, 2002, 12 (4): 167 - 175.

共引文献1

同被引文献19

  • 1Riley G. Tendinopathy-- from basic science to treatment [ J]. Nat Clin Praet Rheumatol, 2008, 4 (2) : 82 - 89.
  • 2Fredberg U, Stengaard-Pedersen K. Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation[ J]. Scand J Med Sci Sports, 2008, 18( 1 ) : 3 - 15.
  • 3Ingber D. Integrins as mechanochemical transducers[J]. Curr Opin Cell Biol, 1991, 3(5) : 841 -848.
  • 4Wang J H, Yang G, Li Z. Controlling cell responses to cyclic mechanical stretching[J]. Ann Biomed Eng, 2005, 33(3) : 337 -342.
  • 5Cao D, Liu W, Wei X, et al. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report[ J]. Tissue Eng, 2006, 12(5) : 1369 -1377.
  • 6Brown T D. Techniques for mechanical stimulation of cells in vitro: a review[J]. Biomech, 2000, 33(1): 3-14.
  • 7Wirtz H R, Dobbs L G. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells [J]. Science, 1990, 250 (4985) : 1266 - 1269.
  • 8Banes A J, Gilbert J, Taylor D, et al. A new vacuum-operated stressproviding instrument that applies static or variable duration cyclic tension or compression to cells in vitro[J]. Cell Sci, 1985, 75 : 35 -42.
  • 9Wang J H. Substrate deformation determines actin cytoskeleton reorganization: A mathematical modeling and experimental study [J ]. Theor Biol, 2000, 202( 1 ) : 33 -41.
  • 10Park J S, Chu J S, Cheng C, et al. Differential effects of equiaxial and uniaxial strain on mesenchymal stem ceils [ J ]. Biotechnol Bioeng, 2004, 88 (3) : 359 - 368.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部