期刊文献+

多延迟微分代数方程θ-方法的渐近稳定性(英文) 被引量:5

Asymptotic stability of θ-methods for differential-algebraic equations with several delays
下载PDF
导出
摘要 考虑线性多延迟微分代数方程θ-方法的渐近稳定性。通过分析相应的特征方程根的性质,给出多延迟微分代数方程解析解的渐近稳定的一个充分条件,进一步,应用特征方程根的性质,得出一个关于线性θ-方法与新θ-方法对方程解析解的渐近稳定性保持的充分条件:当θ∈(1/2,1]时,线性θ-方法与新θ-方法都是渐近稳定的。 Asymptotic stability of θ-methods for linear differential-algebraic equations with several delays is considered. By studying the roots of corresponding characteristic equation obtained by its exponential solution, a sufficient condition is given for asymptotic stability of linear differential-algebraic equations with several delays. Furthermore, through the analysis of characteristic roots, a sufficient condition is obtained for the linear θ-method and the new θ-method to preserve the corre-sponding asymptotic stability of the system, i.e., the linear θ-method and the new θ-method are asymptotically stable if θ∈(1/2, 1].
作者 徐阳 刘明珠
出处 《黑龙江大学自然科学学报》 CAS 2004年第3期3-6,共4页 Journal of Natural Science of Heilongjiang University
基金 Supported by the National scierlce Foundation of china(10271036)
关键词 微分代数方程 稳定性 数值方法 differential-algebraic equation stability numerical method
  • 相关文献

参考文献9

  • 1[1]ASCHER U, CHIN H, RIECH S. Stability of DAE and invariant manifolds[J]. Numer Math, 1994, 67: 131- 149.
  • 2[2]LUBICH C. On projected Runge-Kutta methods for differential-algebraic equations[J]. BIT, 1991, 31: 545-550.
  • 3[3]ZHU W J, PETZOLD L R. Asymptotic stability of linear delay differential-algebraic equations and numerical methods[J].Appl Numer Math, 1997, 24: 247-264.
  • 4[4]ASCHER U, PETZOLD L R. Stability of computational methods for constrained dynamics systems[J]. SIAM J Sci Comput,1993, 14:95- 120.
  • 5[5]HU G, MITSUI T. Stability analysis of numerical methods for systems of neutral delay-differential equations[J]. BIT, 1995,35: 504- 515.
  • 6[6]LU L H. Numerical stability of the θ-methods for systems of differential equations with several delay terms[J]. J Comput Appl Math, 1991, 34: 291-304.
  • 7[7]YANG B, QIU L, MITSUI T. GPG-stability of Runge-Kutta methods for generalized delay differential systems[J]. Comput Math Appl, 1999, 37: 89-97.
  • 8[8]KUANG J X, XIANG J X, TIAN H J. The asymptotic stability of one-parameter methods for neutral differential equations[J]. BIT, 1994, 34: 400-408.
  • 9[9]ZHAO J J, LIU M Z, QIU S S. The stability of the θ-methods for delay differential equations[J]. J Comput Math, 1999, 17:441 -448.

同被引文献3

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部