期刊文献+

基于机器视觉的田间杂草识别技术研究进展 被引量:28

Research advances of weed identification technology using machine vision
下载PDF
导出
摘要 田间杂草识别技术是实现变量喷洒除草剂以保护环境的关键所在。针对国内外在精细农业的杂草识别领域,全面、系统地分析了基于机器视觉的田间杂草识别技术的研究进展与应用状况,以促进该项技术在中国的应用和发展。分别阐述了利用植物和背景形状特征、纹理特征、颜色特征和多光谱特征识别田间杂草技术的理论依据、特征参数、研究状况和问题所在,并指出了实现田间实时识别的难点。 Weed identification technology is the key to the realization of selectively spraying herbicide for the environmental protection. In order to promote the research and application of this technology in China, the research methods and advances of weed identification technology using machine vision in precision farming were analyzed. The theory, feature parameters, research advances and problems using the shape, texture, color and multi-spectral features to identify weed were discussed, respectively. The difficulties of real-time identification were concluded.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2004年第5期43-46,共4页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家"863"高新技术发展计划基金资助项目(2001AA245012)
关键词 机器视觉 田间杂草 识别技术 环境保护 weed identification machine vision research advance
  • 相关文献

参考文献23

  • 1Paice M E R,Miller P C H,Bodle J D.An experimental sprayer for the spatially selective application of herbicides [J]. Journal of Agricultural Engineering Research, 1995,60:107-116.
  • 2Guyer D E, Miles G E, Schreiber M M, et al. Machine vision and image processing for plant identification[J].Transactions of the ASAE, 1986,29(6): 1500-1507.
  • 3Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identification [J]. Transactions of the ASAE, 1993, 36(1):163-171.
  • 4Woebbecke D M, Meyer G E, Von Bargen K, et al.Shape features for identifying young weeds using image analysis[J]. Transactions of the ASAE, 199538(1):271-281.
  • 5YonekawaS, Sakai N, Kitani O. Identification of idealized leaf types using simple dimensionless shape factors by image anlysis[J]. Transactions of the ASAE,1996,39 (4): 1525- 1533.
  • 6FranzE, Gebhardt M R, Unklesbay K B. Shape description of completely visible and partially occluded leaves for identifying plants in digital images [J].Transactions of the ASAE, 1991,34(2): 673- 681.
  • 7Shearer S A, Holmes R G. Plant identification using color co-occurrence matrices [J]. Transactions of the ASAE,1990,33 (6): 2037 - 2044.
  • 8Meyer G E, Mehta T, Kocher M F, et al. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying[J]. Transactions of the ASAE, 1998,41(4):1189-1197.
  • 9Burks T F, Shearer S A, Gates R S. Backpropagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of the ASAE, 2000,43(4):1029-1037.
  • 10Tang L, Tian F, Steward B L, et al. Texture based weed classification using gabor wavelets and neural network for real-time selective herbicide application[A].ASAE paper, 1997. Time selective herbicide application [J]. ASAE paper. St Joseph Mich, 1997.

二级参考文献3

  • 1Tao Y,Transactions ASAE,1995年,38卷,5期,1555页
  • 2王荣本,中国图象图形学报,2000年,5卷,8期,632页
  • 3郑南宁,计算机视觉和模式识别,1998年,143页

共引文献91

同被引文献429

引证文献28

二级引证文献343

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部