期刊文献+

细沟侵蚀动态过程模拟室内试验和模型验证研究 被引量:4

Simulation study on the dynamic rill erosion processes: model validation with laboratory experiments
下载PDF
导出
摘要 进行了一系列室内试验,以验证模拟细沟演变动态过程的数学模型。该模型模拟了细沟水流的动态过程、水力学特性参数的空间变化、细沟中土壤的剥离、运输及沉积过程;模拟了细沟在侵蚀过程中的形态演变,其中包括沟宽、沟深、局部坡度在空间上的差异及其随时间的变化;模拟了细沟侵蚀/泥沙沉积后局部细沟形态的变化对细沟水流反馈效应。试验土壤为砂壤土,采用的坡度为:3%,5%,7%;3个流量:7.6,11.4,15.2L/min。在同一试验条件不同工况下对模型进行了验证,同时对细沟中沿程水流速度和细沟末端的侵蚀产沙量进行了模拟值和试验实测值的对比。结果表明,模型预测值和实测细沟形态演变值具有很好的一致性,模型中提出的侵蚀、沟床形态变化和水力学特性参数间的互反馈环效应可以反映细沟侵蚀的动态演变过程和发展趋势。 A series of laboratory experiments were conducted to verify the simulation model for the dynamic process of rill erosion and evolution. The experiments focused on the validation of the dynamic processes of rill flow, the spatial variation of hydraulic parameters, the soil detachment, transport and deposition; the verification of temporal and spatial evolution of rill morphology, including rill width, flow depth, as well as the local slope gradients; and the validation of feedback effect of local rill morphology change as affected by erosion and deposition on rill flow. The soil material used was a sandy loam. Three slopes: 3%, 5% and 7% and 3 flow rates: 7.6, 11.4 and 15.2 L/min were used in the experiments. Numerical simulations were made on the same conditions as the experiments for different cases for the model verification. Simulated flow velocity values along the rills, sediment concentrations at the rill end were compared with those from the experiments. The results showed that the model prediction was consistent with the measured patterns of morphological changes as the rill evolved, which suggests that the model itself and the feedback loops in the model between erosion, bed morphological changes, and hydraulics were adequate to describe the trend and characteristics of rill erosion dynamics.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2004年第5期55-62,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 教育部重大项目"细沟土壤侵蚀动力过程模型模拟及其基本参数的系统研究" 中国科学院知识创新重要方向项目"水蚀预报模型研究"资助(KZCX3-SW-422)
关键词 细沟侵蚀 动态过程 模拟 模型验证 室内试验 rill erosion dynamic process simulation model validation laboratory experiments
  • 相关文献

参考文献13

  • 1Nearing M A, Foster G R, Lane L J, et al. A processbased soil erosion model for USDA-water erosion prediction project technology [J]. Trans of the ASAE,1989,32:1587- 1593.
  • 2Misra R K, Rose C W. Application and sensitivity analysis of process based erosion model Guest [J].European J of Soil Science, 1996,47:593- 604.
  • 3Morgan R P C, Quinton J N, Rickson R J. EUROSEM Documentation Manual [A]. Silsoe College, Silsoe,Bedford, UK, 1992.
  • 4Morgan R P C. The european soil erosion model: an update on its structure and research base [A]. In R. J.Rickson (Ed.), Conserving Soil Resources, European Perspectives, CAB International, Oxon, UK, 286- 299,1995.
  • 5雷廷武,姚春梅,张晴雯,Mark Nearing,邵明安,梅树立.细沟侵蚀动态过程模拟数学模型和有限元计算方法[J].农业工程学报,2004,20(4):7-12. 被引量:13
  • 6Nearing M A, Bradford J M, Parker S C. Soil detachment by shallow flow at low slopes[J]. Soil Sci Soc Am J,1991,55:339-344.
  • 7Nearing M A. A probabilistic model of soil detachment by shallow turbulent flow[J]. Trans of the ASAE, 1991,34:81-85.
  • 8Nearing M A, Lane L J, Alberts E E, et al. Prediction technology for soil erosion by water: status and research needs[J]. Soil Sci Soc Am J,1990,54:1702-1711.
  • 9Rose CW, Williams J R, Sander G C, et al. A mathematical model of soil erosion and deposition processes: Ⅰ. theory for a plane land element[J]. Soil Sci Soc Am J, 1983,47:991-995.
  • 10Rose CW, Williams J R, Sander G C, et al. A mathematical model of soil erosion and deposition processes: Ⅱ. Application to data from an arid-zone catchment[J]. Soil Sci Soc Am J, 1983,47: 996- 1000.

二级参考文献34

  • 1Einstein H A, Ning Chien. Second Approximation to the Solution of the Suspended Load Theory[A]. Fluid Mechanics Laboratory, University of California, Berkeley, 1954.
  • 2Vanoni V, Namicos G N. Resistance properties of sediment-laden strains[J]. Trans of the ASCE, 1960,3055.
  • 3Foster G R, Meyer L D. A closed form erosion equation for upland areas[A]. In: Sedimentation (Einstein)[C]. Shen H W(ed.) Colorado State University, Ft. Collins, CO Ch. 12, 1972.
  • 4Meyer L D, Foster G R, Nikolov S. Effect of flow rate and canopy on rill erosion[J]. Trans of the ASAE,1975,18:905-911.
  • 5Foster G R, Huggins L F, Meyer L D. A laboratory study of rill hydraulics: I velocity relationships[J]. Trans of the ASAE, 1984,27,790-796.
  • 6Gilley J E, Kottwitz E R, Simanton J R. Hydraulic characteristics of rills[J]. Trans of the ASAE,1990,33:1900-1906.
  • 7Hairsine P B, Rose C W. Modeling water erosion due to overland flow using physical principles, 2, Rill Flow[J]. Water Resour Res,1992(b),28,245-250.
  • 8Laflen J M, Elliot W J, Simanton R, et al. WEPP soil erodibility experiments for rangeland and cropland soils[J]. J Soil and Water Conservation,1991,46(1):39-44.
  • 9Morgan R P C. The european soil erosion model: an update on its structure and research base[A]. In R.J. Rickson (Ed.), Conserving soil resources, european perspectives[C]. CAB International, Oxon, UK, 286-299, 1995.
  • 10Nearing M A. A probabilistic model of soil detachment by shallow turbulent flow[J]. Trans of the ASAE,1991,34:81-85.

共引文献12

同被引文献50

引证文献4

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部