期刊文献+

长白山阔叶红松林的零平面位移和粗糙度 被引量:34

Zero-plane displacement and roughness length of the mixed forest of broad-leaved and Korean-pine in Changbai Mountain.
下载PDF
导出
摘要 根据长白山阔叶红松林气象观测塔上 16个月的风速、温度、湿度及气压的连续观测资料 ,根据中性层结条件下风速随高度的对数变化规律 ,利用廓线法中的牛顿迭代法计算了该森林的零平面位移d和粗糙度z0 ,结果表明 ,d和z0 均存在着较明显的季节变化 ,在生长季d较大 ,z0 较小 ,而非生长季恰好相反 ,标准化的零平面位移d/h和粗糙度z0 /h在生长季和非生长季平均分别为 0 86 7,0 76 4和 4 4 7× 10 -2 ,3 5 9× 10 -2 。与叶面积指数对比分析发现 ,d/h和z0 /h与叶面积指数分别存在正相关和负相关的关系。敏感性分析表明 ,牛顿迭代法求d和z0对风速的精度要求较高 ,需要精度高的仪器和长期的数据积累。 Based on logarithm law of wind profile under neutral stratification,zero-plane displacement d and roughness length z 0 of the mixed forest of broad-leaved and Korean-pine in Changbai Mountain were calculated with Newton iteration according to the 16 months profile measurements of wind speed,air temperature,humidity and pressure.The results showed that d and z 0 had obvious seasonal variation.In growing season was relatively high and z 0 was lower.Normalized values,d/h and z 0/h,were in the magnitude of 0.867,0.764 and 4.47×10 -2,3.59×10 -2 in growing season and dormant season, respectively. d/h and z 0/h were positively and negatively correlated with leaf area indexes of the forest.Sensitive analysis showed that the iteration approach of calculating d and z 0 demanded high precision measurements of wind speed in the profiles.This work should be based on the long term measurements with high-precision instruments.
出处 《生态学杂志》 CAS CSCD 北大核心 2004年第5期84-88,115,共6页 Chinese Journal of Ecology
基金 国家自然科学基金项目 ( 3 0 3 70 2 93 ) 中国科学院知识创新工程重大资助项目 (KZCX1 SW 0 1 0 1A1)
关键词 零平面位移 粗糙度 阔叶红松林 牛顿迭代法 zero-plane displacement,roughness length,mixed forest of broad-leaved and Korean-pine,Newton iteration approach.
  • 相关文献

参考文献22

  • 1[3]Businger JA. 1974. Aerodynamics of vegetated surfaces [ M ].Scripta, Wash. DC: Proc. Sem. on Heat and Mass Transfer in the Environment of Vegetation(Dubrovnik, Yugoslavia), 139~ 165.
  • 2[4]Counihan J. 1971. Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements [ J ]. Atmos. Environ., 5:637~ 642.
  • 3[5]De Bruin HAR, Verhoef A. 1997. A new method to determine the zero-plane displacement[J]. Boundary-Layer Meteorol., 82:159~ 164.
  • 4[6]Dolman AJ. 1986. Estimates of roughness length and zero plane displacement for a foliated and non-foliated oak canopy[J]. Agric. For. Meteorol., 36: 241 ~ 248.
  • 5[7]Hussain M, Lee BE. 1980. A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings [ J ]. J.Wind Engin. Industr. Aerodyn., 6: 207~ 225.
  • 6[8]Iqbal M, Khatry A, Seguin B. 1977. A study of the roughness effects of multiple windbreaks [ J ]. Boundary-Layer Meteorol.,11:187~203.
  • 7[9]Jackson PS. 1981. On the displacement height in the logarithmic velocity profile[ J ]. J. Fluid. Mech., 111:15~ 25.
  • 8[10]Jarvis PG, James GB, Landsberg JJ. 1976. Coniferous forest[A].In: Monteith JL, ed. Vegetation and the Atmosphere. Vol. 2[C]. London: Academic Press, 171 ~240.
  • 9[11]Kimura R, Otsuki K, Kamichika M. 1999. Relationships between the zero-plane displacement and the roughness length over sorghum and alfalfa canopies[J]. J. Agric. Meteorol., 55:15~24.
  • 10[12]Kondo J. 1971. Relationship between the roughness coefficient and other parameters[ J]. J. Meteorol. Soc. Jap., 49:121 ~ 124.

同被引文献459

引证文献34

二级引证文献467

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部