摘要
应用隐式积分法进行电力系统暂态稳定仿真时,常采用牛顿法求解非线性方程.为便于求解,提出了双向模块简化技术,将牛顿法迭代中线性增量方程的求解分解为正向简化和反向回代过程.正向简化利用模块接口消去发电机等子系统方程,得到易求解的电力网络方程.反向回代求解电力网络方程,通过模块接口依次回代求解发电机及其控制器变量.该技术体现了电力系统内在的模块性,保持了牛顿仿真算法收敛速度快、没有交割误差的优点,同时具有模块清晰、易扩展和易编程等特点.将该仿真算法应用在10发电机39节点新英格兰系统的仿真验算中,结果表明了该算法的有效性和合理性.
This paper proposes an approach of bi-directional module reduction (BMR) for power system transient stability simulation. The BMR technique comprises processes of forward reduction and backward evaluation. The forward reduction process deals with increment equations of generators and their controllers to obtain solvable network equations; the backward evaluation process evaluates generator variables using the solution of the network equations. By means of the BMR technique, the simulation approach based on Newton iteration will become more modular,expandable and programmable while remaining its quick convergence with high precision and good numerical stability. Simulation results on the 10-generator 39-bus New England test system are given to verify the effectiveness, reliability and robustness of the approach.
出处
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2004年第9期797-801,共5页
Journal of Tianjin University:Science and Technology
基金
国家自然科学基金资助项目(50377028).
关键词
电力系统稳定性
电力系统仿真
牛顿法
双向模块简化
power system dynamic stability
power system simulation
Newton method
bi-directional module reduction