期刊文献+

Web ME——一个大型网络挖掘环境系统 被引量:1

WebME—A large web mining environment system
下载PDF
导出
摘要 随着互联网的飞速发展,如何高效利用万维网这一巨大信息源,从中挖掘潜在的有价值的信息和知识,已成为国际学术界一个研究热点.传统的Web信息检索技术已无法满足人们日益增长的Web信息检索和挖掘需求,而网络挖掘技术可以弥补搜索引擎的不足.重点介绍一个网络挖掘原型系统WebME,包括其系统结构、主要功能和特点,并提出了进一步完善的一些设想.WebME采用了一些独特的网络挖掘技术,集多种网络挖掘功能于一体,是目前国内功能最为全面的网络挖掘系统之一. With the rapid development of Internet, how to utilize the WWW and mine potential valuable knowledge from it has become a hot national research area. The traditional web information searching techniques have failed to meet people's increasing requirement of web information searching and mining, and the web mining techniques can remedy the shortage of search engine. A web mining prototype system named WebME is introduced, including its system architecture, main functions, characteristics, and the idea about perfecting it later. WebME adopts some special web mining techniques, integrates manifold functions into it, and is one of the completest web mining systems at present.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2004年第9期1164-1167,1172,共5页 Journal of Harbin Institute of Technology
基金 国家重点基础研究发展规划资助项目(G1998030414) 中国博士后科学基金资助项目(2003034147).
关键词 网络信息检索 网络挖掘系统 网页分类 信息推荐 Classification (of information) Information retrieval Internet World Wide Web
  • 相关文献

参考文献3

二级参考文献2

共引文献152

同被引文献29

  • 1张文,唐锡晋.基于Web内容挖掘的信息支持工具AIS-GAE[J].管理评论,2006,18(9):21-26. 被引量:3
  • 2WWW FAQs: How many web pages are there?[EB/OL], http://www.boutell.com/newfaq/misc/sizeofweb.html.
  • 3White C. Consolidating, accessing and analyzing unstructured data[EB/OL], http://www.b-eye-network.com /view/2098.
  • 4Tang X J. Toward meta-synthetic support to unstructured problem solving[J]. International Journal of Information Technology & Decision Making, 2007, 6(3): 491-508.
  • 5Hotho A. A brief survey of text nlining[EB/OL], http://www.kde.cs.uni-kassel.de/hotho/pub/2005/hotho05Text Mining.pdf.
  • 6Hearst M. Untangling text data mining[C]// Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, University of Maryland, 1999:27-56.
  • 7Feldman R, Dagan I. Mining text using keyword distribution[J]. Journal of Intelligent Information Systems, 1998, 10:281-300.
  • 8Hotho A, Staab S, Stumme G. Ontologies improve text document.clustering[C] // Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, Florida, USA, 2003: 541-544.
  • 9Yang H C, Lee C H. A text mining approach for automatic construction of hypertexts[J]. Expert Systems with Applications, 2005, 29(4): 723-734.
  • 10Lo S H. Web service quality control based on text mining using support vector machine[J]. Expert Systems with Applications, 2008, 34(1): 603-610.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部