期刊文献+

不同模量横力弯曲梁的解析解 被引量:44

Analytical Solution for Bending Beam Subject to Lateral Force With Different Modulus
下载PDF
导出
摘要  选择处于平面复杂应力状态下横力弯曲梁,对结构进行了中性层的判定,推导出中性轴、正应力、剪应力、位移的计算公式,得到如下结论:对于复杂应力状态下的不同模量弹性弯曲梁,其中性轴位置与剪应力无关,因此用正应力作为判据而得到解析解,改进了以往用主应力判定中性点的多次循环的计算方法· 把解析解的结果与经典力学同模量理论,以及有限元数值解进行了比较。 A bending beam,subjected to two state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
出处 《应用数学和力学》 CSCD 北大核心 2004年第10期1014-1022,共9页 Applied Mathematics and Mechanics
关键词 拉压不同模量 中性轴 横力梁 解析解 different tension-compression modulus neutral axis beam subjected to lateral force analytical solution
  • 相关文献

参考文献13

  • 1[1]Medri G. A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J]. Transactions of the ASME, 1982,26(104): 26-28.
  • 2[3]Srinivasan R S , Ramachandra L S. Large deflection analysis of bimodulus annular and circular plates using finite elements[ J ]. Computers & Structures, 1989,31( 5 ): 681-691.
  • 3[4]Srinivasan R S, Ramachandra L S. Axisymmetric buckling and post-bucking of bimodulus annular plates[J]. Eng Struct, 1989,11(7) :195-198.
  • 4张允真,王志锋.不同拉、压模量弹性力学问题的有限元法[J].计算结构力学及其应用,1989,6(1):236-246. 被引量:44
  • 5[6]Papazoglou J L, Tsouvalis N G, Mechanical behaviour of bimodulus laminated plates[J]. Composite Structures, 1991,17( 1 ): 1-22.
  • 6杨海天,邬瑞锋,杨克俭,张允真.初应力法解拉压双弹性模量问题[J].大连理工大学学报,1992,32(1):35-39. 被引量:17
  • 7[8]TSENG Yi-ping, LEE Cheng-tao. Bending analysis of bimodular laminates using a higher-order finite strip method[J]. Composite Structures, 1995,30(4): 341-350.
  • 8[9]YE Zhi-ming. A new fmite element formulation for planar elastic deformation[J]. Internat J for Numerical Methods in Engineering, 1997,14(40): 2579-2592.
  • 9[10]TSENGYi-ping,JIANGYu- ching. Stress analysis of bimodular laminates using hybrid stress plate elements [ J ]. International Journal of Solids Structures, 1998,35 (17): 2025-2028.
  • 10[11]YE Zhi-ming, YU Huang-ran, YAO Wen-juan. A finite element formulation for different Young' s modulus when tension and compression loading[A]. In:Jin Ho Kwak Ed. Com2Mac Conference on Computational Mathematics [ C ]. South Korea: Pohang University of Science and Technology, 2001,2-5.

二级参考文献16

  • 1[1]Medri G. A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J].Transactions of the ASME,1982,26(104):26-28.
  • 2[3]Srinivasan R S,Ramachandra L S.Large deflection analysis of bimodulus annular and circular plates using finite elements[J].Computers & Structures,1989,31(5):681-691.
  • 3[4]Srinivasan R S, Ramachandra L S. Axisymmetric buckling and post-bucking of bimodulus annular plates[J].Eng Struct,1989,11(7):195-198.
  • 4[6]Papazoglou J L, Tsouvalis N G.Mechanical behaviour of bimodulus laminated plates[J].Composite Structures,1991,17(1):1-22.
  • 5[8]TSENG Yi-ping,LEE Cheng-tao.Bending analysis of bimodular laminates using a higher-order finite strip method[J].Composite Structures,1995,30(4):341-350.
  • 6[9]YE Zhi-ming.A new finite element formulation for planar elastic deformation[J].Int J Numerical Methods in Engineering,1997,14(40):2579-2592.
  • 7[10]TESENG Yi-ping,JIANG Yu-ching.Stress analysis of bimodular laminates using hybrid stress plate elements[J].International Journal Solids Structures,1998,35(17):2025-2028.
  • 8[12]YE Zhi-ming,YU Huang-ran,YAO Wen-juan.A finite element formulation for different Young's modulus when tension and compression loading[A].In:Jin Ho Kwak Ed.Com2Mac Conference on Computational Mathematics[C].South Korea: Pohang University of Science and Technology,2001,2-5.
  • 9[13]Raffaele Zinno, Fabrizio Greco.Damage evolution in bimodular laminated composites[J].Composite Structures,2001,53(4):381-402.
  • 10邬瑞锋,应用力学学报,1989年,6卷,3期,94页

共引文献88

同被引文献219

引证文献44

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部