摘要
利用沿同宿环的线性变分方程的线性独立解作为在同宿环的小管状邻域内的局部坐标系来建立Poincar啨映射,研究了高维系统扭曲同宿环的分支问题· 在非共振条件和共振条件下,获得了1_同宿环、1_周期轨道、2_同宿环、2_周期轨道和两重2_同期轨道的存在性、存在个数和存在区域· 给出了相关的分支曲面的近似表示· 同时。
By using the linear independent solutions of the linear variational equation along the homoclinic loop as the demanded local coordinates to construct the Poincaré map,the bifurcations of twisted homoclinic loop for higher dimensional systems are studied.Under the nonresonant and resonant conditions,the existence,number and existence regions of the 1-homoclinic loop,1-periodic orbit,2-homoclinic loop,2-periodic orbit and 2-fold 2-periodic orbit were obtained.Particularly,the asymptotic repressions of related bifurcation surfaces were also given.Moreover, the stability of homoclinic loop for higher dimensional systems and nontwisted homoclinic loop for planar systems were studied.
出处
《应用数学和力学》
EI
CSCD
北大核心
2004年第10期1076-1082,共7页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10371040)