摘要
本文研究具有非双曲奇点的高维系统在小扰动下的同宿轨道分支问题,通过在未扰同宿轨道邻域建立局部坐标系,导出系统在新坐标系下的Poincare映射,对伴随超临界分支的通有同宿轨道的保存及分支出周期轨道的情况进行了讨论,推广和改进了一些文献的结果.
The problem of homoclinic bifurcation under perturbation is studied for the high dimensional system with nonhyperbolic equilibrium. By constructing local coordinate systems near the unperburbed homoclinic orbit, we get Poincare maps of the system in new coordinate systems, and discuss the persistence of generic homoclinic orbit and the bifurcation of periodic orbit from the homoclinic orbit for the system accompanied with transcritical bifurcation. Some known results are extended.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第5期957-964,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10071022)
上海市重点学科建设项目资助
关键词
超临界分支
同宿轨道
周期轨道
Transcritical bifurcation
Homoclinic orbit
Periodic orbit