期刊文献+

IDEAL STRUCTURE OF UNIFORM ROE ALGEBRAS OVER SIMPLE CORES 被引量:3

IDEAL STRUCTURE OF UNIFORM ROE ALGEBRAS OVER SIMPLE CORES
原文传递
导出
摘要 This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B*(X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B*(X) are completely described by the corona of the Stone-Cech compactification of X.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第2期225-232,共8页 数学年刊(B辑英文版)
基金 Project supported by the 973 Project of the Ministry of Science and Technology of China, the National Natural Science Foundation of China (No.10201007) the Doctoral Programme Foundation of the Ministry of Education of China and the Shanghai Science and
关键词 Uniform Roe algebra Simple core Ideal ULTRAFILTER Stone-Cech com-pactification 代数学 有界几何学 度量空间 充分条件
  • 相关文献

参考文献10

  • 1[1]Chen, X. M. & Wang, Q., Notes on ideals of Roe algebras, Oxford Quarterly J. of Math., 52(2001),437-446.
  • 2[2]Chen, X. M. & Wang, Q., Localization algebras and duality, J. London Math. Soc., 66:2(2002), 227-239.
  • 3[3]Gillman, L. & Jerison, M., Rings of Continuous Functions, GTM 43, Springer-Verlag, ,1960.
  • 4[4]Higson, N. & Roe, J., On the coarse Baum-Connes conjecture, in Proc. 1993 Oberwolfach Conference in the Novikov Conjecture, S. Ferry, A. Ranicki and J. Rosenberg (eds), London Math. Soc. Lecture Note Series 227, Cambrige University Press, 1995, 227-254.
  • 5[5]Higson, N. & Roe, J., Amenable group actions and the Novikov conjecture, J. Reine Angew. Math.,519(2000), 143-153.
  • 6[6]Higson, N., Roe, J. & Yu, G., A coarse Mayer-Vietoris principle, Math. Proc. Camb. Phil. Soc.,114:85(1993), 85-97.
  • 7[7]Lubotzky, A., Discrete groups, expanding graphs and invariant measures, Progress in Mathematics,Vol. 125, Birkhanser Verlag, 1994.
  • 8[8]Roe, J., Index theory, coarse geometry and topology of manifolds, CBMS Reginal Conf. Series in Math.,No. 90, AMS, 1996.
  • 9[9]Yu, G., Coarse Baum-Connes conjecture, K-Theory, 9:3(1995), 199-221.
  • 10[10]Yu, G., The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139(2000), 201-240.

同被引文献3

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部