期刊文献+

NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL 被引量:4

NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL
原文传递
导出
摘要 In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第2期243-254,共12页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.19831060) the 333 Project of Jiangsu Province of China.
关键词 Predator-prey-mutualist model Non-constant positive steady-states BIFURCATION A priori estimates 分歧 参数 渐近性 解决方法 椭圆
  • 相关文献

参考文献10

  • 1[1]Lin, C. S., Ni, W. M. & Takagi, I., Large amplitude stationary solutions to a chemotais systems, J.Differential Equations, 72(1988), 1-27.
  • 2[2]Ni, W. M., Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc.,45:1(1998), 9-18.
  • 3[3]Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences,New York, 1973-1974.
  • 4[4]Pang, P. Y. H. & Wang, M. X., Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. of the London Math. Soc., 88:1(2004), 135-157.
  • 5[5]Pang, P. Y. H. & Wang, M. X., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh A, 133:4(2003), 919-942.
  • 6[6]Rabinowitz, P., Some global results for nonlinear eigenvalue problems, J. Func. Anal., 7(1971), 487-513.
  • 7[7]Rai, B., Freedman, H. I. & Addicott, J. F., Analysis of three species modles of mutualism in predatorprey and competitive systems, Math. Biosc., 65(1983), 13-50.
  • 8[8]Smoller, J., Shock Waves and Reaction-Diffusion Equations, Second edition, Springer-Verlag, New York, 1994.
  • 9[9]Wang, M. X., Non-constant positive steady-states of the Sel'kov model, J. of Differential Equations,190:2(2003), 600-620.
  • 10[10]Zheng, S. N., A reaction-diffusion system of a predator-prey-mutualist model, Math. Biosc., 78(1986),217-245.

同被引文献21

  • 1Bazykin A D. Nonlinear dynamics of interacting populations[M].Singapore:World Scientific, 1998.
  • 2Wang M X, Wu Q. Positive solutions of a prey-predator model with predator saturation and competition[J].Journal of Mathematical Analysis and Applications, 2008, 345: 708-718.
  • 3Chen W Y, Wang M X. Qualitative analysis of predator-prey model with Beddington -DeAngelis function response and diffusion[J]. Mathimatical and Computer Modeling, 2005, 42: 31-44.
  • 4Hwang T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J].Journal of Mathematical Analysis and Applications, 2002, 281: 395-401.
  • 5Liu Z H, Yuan R. Stability and bifurcation in a delayed predator-prey system with Beddington -DeAngelis functional response[J]. lournal of Mathematical Analysis and Applications, 2004, 296: 521-537.
  • 6Cantrell R S, Cosner C. On the dynamics of predator-prey models with Beddington-DeAngelis functional response[J].Journal of Mathematical Analysis and Applications, 2001, 257: 206-222.
  • 7Chen W Y, Peng R. Stationary patterns created by cross-diffusion for the competitor- competitor-mutualist model[J].Journal of Mathematical Analysis and Applications, 2004, 291(2): 550-564.
  • 8Hei L J, Yu Y. Non-constant positive steadystates of one resource and two consumers model with diffusion[J].Journal of Mathematical Analysis and Applications, 2008, 339: 566-581.
  • 9Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotais systems[J].Journal of Differential Equations, 1988, 72: 1-27.
  • 10Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion[J].Journal of Differential Equations, 1996, 131: 79-131.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部