期刊文献+

基于组织协同进化分类算法的遥感图像目标识别 被引量:2

Remote Sensing Target Recognition Based on Organizational Coevolutionary Classification Algorithm
下载PDF
导出
摘要 针对遥感图像目标识别问题,提出了一种基于组织协同进化分类算法的识别方法。它没有复杂的运算,训练和识别速度都很快。对实测遥感图像的实验表明,本文方法性能稳定,优于文献[3]和[4]中基于支撑矢量机的方法,识别率均达到了95%以上,且训练时间非常短,不到1秒钟。 An organizational coevolutionary classification algorithm is proposed for remote sensing target recognition. This method has not complex computation, so its computational cost is very low. Experimental results show our method outperforms the methods proposed in literature [3] and [4], which is based on SVM, and its predictive accuracy is higher than 95%. furthermore, the training the of our method is less than 1 second.
出处 《信号处理》 CSCD 2004年第3期277-280,共4页 Journal of Signal Processing
基金 国家自然科学基金(批准号:60133010)
关键词 遥感图像 图像目标识别 进化分类算法 特征提取 organization classification coevolution remote sensing target recognition
  • 相关文献

参考文献4

二级参考文献25

  • 1[1]Hu M K. Visual Pattern Recognition by Moment Invariants, IRE Trans. Inform. Theory, 1962, IT-8:179-187
  • 2[2]Niblack W, Barber R, Equitz W, Flickner M, Glasman D,Petkovic D, and Yanker P. The qbic Project: Querying Image by Content Using Color, Texture, and Shape, SPIE,1993, 1908: 173-187.
  • 3[3]Chapelle O, Haffner P, and Vapnik V N. Support Vector Machines for Histogram-based Image Classification,IEEE Trans. On Neural networks, 1999, 10(5):1055-1064.
  • 4[4]Vapnik V N. The Nature of Statistical Learning Theory,Springer-VerLag, NY, 1995.
  • 5[5]Cortes C, and Vapnik V. Support Vector Networks,Machine Learning, 1995, 20:273-297.
  • 6[6]Scholkopf B, Sung K, Burges C, Girosi F, Niyogi P, Pogio T, and Vapnik V. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. A.I.Memo1559, MIT, December 1996.
  • 7[7]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998, 2(2): 955-974.
  • 8[1]Niblack W,Barber R,Equitz W,et al.The Qbic Project:Querying Image by Content Using Color,Texture,and Shape[R].SPIE,1993,1908:173-187.
  • 9[2]Chapelle O,Haffner P,Vapnik V N.Support Vector Machines for Histogram-based Image Classification[J].IEEE Trans.on Neural Networks,1999,10(5):1055-1064.
  • 10[3]Kohonen T.Self-Organizing Maps[M].NY:Springer-Verlag,1995.

共引文献41

同被引文献17

  • 1肖志坚,周焰,隋东坡,韩世明.基于结构特征的遥感图像机场目标识别[J].红外与激光工程,2005,34(3):314-318. 被引量:11
  • 2De Jong K A, Spears W, Cordon D F. Using Genetic Algorithms for Concept Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 155-188.
  • 3Janikow C Z. A knowledge-intensive Genetic Algorithm for Supervised Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 189-288.
  • 4Holland J H. Escaping Brittleness: The Possibilities of Genetic Purpose Learning Algorithms Applied to Parallel Rule-based Systems [J]. Machine Learning (S0885-6125), 1986, 10(4): 593-623.
  • 5Wilson S. Classifier Systems and the Animate Problem [J]. Machine Learning (S0885-6125), 1987, 2(3): 199-228.
  • 6Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, Perth, NJ, USA: 1EEE service center, 1995: 1942-1948.
  • 7Shi Y, Eberhart R C. A Aodified Particle Swarm Optimizer [C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, N J, Anchorage, AK, USA: IEEE service center, 1998: 69-73.
  • 8Swinburne R. Bayes's Theorem [M]. Oxford, UK: Oxford University Press, 2002.
  • 9UCI repository of machine learning databases [DB/OL]. http://www.ic s.uci.edu/-mlearn/MLRepository.html.
  • 10Juliet Juan Liu, James Tin-Yau Kwok. An Extended Genetic Rule Induction Algorithm [C]// Proceeding of IEEE Congress on Evolutionary Computation, San Diego, USA. USA: IEEE, 2000: 458 -463.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部