期刊文献+

基于EMD和奇异值分解技术的滚动轴承故障诊断方法 被引量:5

Fault Diagnosis Approach for Roller Bearings Based on EMD Method and Singular Value Decomposition Technique
下载PDF
导出
摘要 提出了基于 EMD( Empirical mode decomposition)和奇异值分解技术的滚动轴承故障诊断方法。采用EMD方法将滚动轴承振动信号分解成若干个基本模式分量 ( Intrinsic mode function,IMF)之和 ,并形成初始特征向量矩阵。然后对初始特征向量矩阵进行奇异值分解得到矩阵的奇异值 ,将其作为滚动轴承振动信号的状态特征向量 ,通过建立 Mahalanobis距离判别函数判断滚动轴承的工作状态和故障类型。实验数据的分析结果表明 ,本文方法能有效地应用于滚动轴承故障诊断。 A fault diagnosis approach for roller bearings based on empirical mode decomposition (EMD) method and singular value decomposition technique is proposed. The EMD method is used to decompose the roller bearing vibration signal of a roller bearing into many of intrinsic mode function (IMF) components,from which the initial feature vector matrixes are formed. By applying the singular value decomposition technique to the initial feature vector matrixes,the singular values,regarded as the state feature vectors of the roller bearing vibration signals are obtained. The Mahalanobis distance criterion function is used to identify the condition and fault pattern of a roller bearing. Practical examples show that the approach can be applied to the roller bearings fault diagnosis.
出处 《数据采集与处理》 CSCD 2004年第2期204-209,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金 ( 5 0 2 75 0 5 0 )资助项目 高等学校博士点专项科研基金 ( 2 0 0 2 0 5 3 2 0 2 4)资助项目
关键词 滚动轴承 故障诊断 EMD 奇异值分解技术 模式分量 傅里叶变换 EMD roller bearings fault diagnosis singular value decomposition distance criterion function
  • 相关文献

参考文献6

  • 1赵松年, 熊小芸. 子波分析与子波变换[M]. 北京: 电子工业出版社, 1996.1~5.
  • 2钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报,2002,15(2):233-238. 被引量:128
  • 3Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond A, 1998, 454: 903~995.
  • 4Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum [J]. Annu Rev Fluid Mech, 1999,31:417~457.
  • 5Vincent H T, Hu S L J, Hou Z. Damage detection using empirical mode decomposition method and a comparison with wavelet analysis[A]. Proceedings of the Second International Workshop on Structural Health Monitoring[C]. USA: Stanford,1998.891~900.
  • 6蒋正新, 施国梁. 矩阵理论及应用[M]. 北京: 北京航空学院出版社, 1988.87~95.

二级参考文献1

共引文献128

同被引文献55

  • 1胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 2程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用[J].振动.测试与诊断,2006,26(1):24-27. 被引量:46
  • 3胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用[J].振动与冲击,2006,25(4):38-40. 被引量:29
  • 4杜修力,何立志,侯伟.基于经验模态分解(EMD)的小波阈值除噪方法[J].北京工业大学学报,2007,33(3):265-272. 被引量:43
  • 5Shi C.-x., L., O..-f.,Shi W.-x. Hilbert-Huang Transform Based Approach for Structural Damage Detection[J]. Journal of Tung-chi University, 2005, 33(1):16-20.
  • 6全海燕,王威廉.Hilbert-Huang变换及其在心音信号分析中的应用[A].第十一届全国信号处理学术年会论文集[C](北京:中国电子学会),2003.
  • 7Huang, N. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. 1998, 454:911-913.
  • 8Flandrin, P., Rilling, G., et al. Empirical mode decomposition as a filter bank[J]. IEEE Sig Process Lett, 2003, 11(2):112-114.
  • 9Kopsinis, Y., McLaughlin, S. Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach[J]. IEEE Transactions on Signal Processing, 2008, 56(1):1.
  • 10Rilling, G., Flandrin, P., et al. On empirical mode decomposition and its algorithms[A]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03[C] (Grado), 2003.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部