期刊文献+

RRA处理对超高强铝合金微观组织与性能的影响 被引量:50

Effect of RRA on microstructure and properties of new type ultra high strength aluminum alloy
下载PDF
导出
摘要 采用硬度、电导率测试、DSC热分析及TEM观察等手段,研究了回归再时效处理对一种新型低频电磁铸造超高强铝合金组织与性能的影响。研究发现:合金在120℃时效24h后具有较高的硬度和强度水平。合金合宜的回归再时效处理工艺为120℃、24h预时效,180、60min回归,之后120℃、24h再时效。在此条件下,合金的抗拉强度、屈服强度、延伸率和电导率(IACS)分别为721MPa、700MPa、8.1%和34.5%。TEM观察表明:回归再时效过程中合金性能的变化与其微观组织的演变密切相关;回归初期,GP区和η′相的回溶导致合金硬度下降;随后,η′和η相的析出使硬度重新上升至峰值;最后,η′相转变成η、以及η相粗化引起硬度单调下降;再时效后析出的η′相提高了合金的强度、硬度和电导率。 The effect of Retrogression and re-ageing treatments on the microstructure and properties of a new type low frequency electromagnetic casting ultra-high-strength aluminum alloy were investigated using hardness and electric conductivity tests, DSC analysis and TEM observation. It is found that after ageing at 120 ℃ for 24 h, the studied alloy can gain high hardness and strength. After pre-ageing at 120 ℃ for 24 h, retrogression at 180 ℃ for 60 min, and then re-ageing at 120 ℃ for 24 h, the tensile strength, yield strength, elongation and electric conductivity(IACS) of the studied alloy are 721 MPa, 700 MPa, 8.1% and 34.5% respectively. The TEM observation shows that the property changes of the alloy during RRA are closely related to the microstructural evolution. In the early stage of retrogression, the re-dissolution of GP zone and η′ leads to the decrease of hardness, while precipitation of η′ and η makes hardness increase again to a peak value. Then, the transition of η′→η and coarsening of η lead to the decrease of hardness. Precipitation of η′ after reageing increases the hardness, strength and electric conductivity of the studied alloy.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第7期1188-1194,共7页 The Chinese Journal of Nonferrous Metals
基金 国家高技术研究发展计划资助项目(2001AA332030)
关键词 电磁铸造 超高强铝合金 微观组织 性能 RRA处理 RRA electromagnetic casting ultra high strength aluminum alloy microstructure property
  • 相关文献

参考文献10

  • 1[1]David A L, Ray M H. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age, 1991, 2(9): 11-15.
  • 2[4]Park J K, Ardell A J. Affect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical Transactions, 1984, 15A(8):1531 - 1543.
  • 3[5]obinson J S, Tanner D A. Retrogression reaging and residual stresses in 7010 forgings[J]. Fatigue Fracture Engineering Material Structure, 1999, 22: 51 - 58.
  • 4[6]Viana F, Pinto A M P, Santos H M C. Retrogression and reageing of 7075 aluminum alloy: Microstructural characterization[J]. Materials Processing Technology,1999, 92-93: 54-59.
  • 5[8]Wolverton C. Crystalstructure and stability of complex precipitation phase in Al-Cu-Mg-Si and Al-Zn-Mg alloys[J]. Acta Mater, 2001, 49: 3129 - 3142.
  • 6[9]Alder P N, Deiasi R. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy[J]. Metall Trans,1972, 3: 3191-3200.
  • 7[10]Jeglitsch F, Ratzi R. Strength and Toughness of high-strength Al-alloys[J]. Mater Sci Forum, 1987,13/14:157 - 174.
  • 8[11]Lorimer G W. The Mechanism of phase transformations in crystalline solids[J]. Inst Metals, 1968 (1):36 - 41.
  • 9[12]Stiller K, Warren P J, Hansen V, et al. Investigation of precipitation in an Al-Zn-Mg alloy after twostep ageing treatment at 100 ℃ and 150 ℃[J]. Material Science and Engineering A, 1999, A270: 55 - 63.
  • 10[13]Danh D. A TEM study of microstructural changes during retrogression and reageing in 7075 aluminum[J]. Metallurgical Transactions, 1983, 14A (9):1843 - 1850.

同被引文献464

引证文献50

二级引证文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部