期刊文献+

提花织物纹理的Allen-Cahn水平集去噪方法

Image Denoising for Jacquard Fabrics Texture Based on Allen-Cahn Level Set Model
下载PDF
导出
摘要 针对含噪织物纹理在去噪过程中存在的形状失真和拓扑演变适应性差的问题 ,提出一种新的提花织物纹理图像去噪算法 ,并讨论了Allen Cahn方程的水平集公式 该算法结合Allen Cahn方程和水平集去噪技术 ,首先利用Allen Cahn方程生成面积保留的平均曲率运动 ;然后利用水平集公式演化纹理图像中的曲线 ,该公式可以提供简单且稳健的边缘估计和阈值策略 实验结果表明了该算法的可行性 。 Deals with the problem of shape distortion and the poor adaptation to topological evolution in denoising of fabric textures under noisy environment. A novel noise removal algorithm for jacquard fabrics textures was proposed, and a level set formulation for the Allen-Cahn equation was discussed. The algorithm combined the merits of Allen-Cahn equation and level set denoising technology. First, the Allen-Cahn equation was put forward to generate area-preserving mean curvature motion. Then a level set formulation was developed to evolve curves arising in texture image. The proposed formulation also provided easier and more robust edge estimation and threshold strategies. Experimental results show that the proposed algorithm is feasible, and reaches an obvious effect in terms of edge-preserving image denoising.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第8期1033-1039,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划 ( 2 0 0 1AA415 2 2 0 )资助
关键词 Allen-Cahn方程 水平集方程 提花织物纹理 图像去噪 CAD MCM 平均曲率运动 Allen-Cahn equation level set jacquard fabrics image denoising
  • 相关文献

参考文献15

  • 1Ceccarelli M, Simone V, Murli A. Well-posed anisotropic diffusion for image denoising [J].IEEE Transactions on Image and Signal Processing, 2002, 149(4): 244~252
  • 2袁泽剑,郑南宁,张元林,郭震.一种非线性扩散滤波器的设计方法及其应用[J].计算机学报,2002,25(10):1072-1076. 被引量:22
  • 3耿茵茵,蔡安妮,孙景鳌.一种非线性扩散线形纹理图像增强的方法[J].计算机辅助设计与图形学学报,2002,14(2):140-143. 被引量:6
  • 4杨朝霞,逯峰,李岳生.变正则参数方法在带噪图像保边缘恢复中的应用[J].计算机辅助设计与图形学学报,2003,15(4):406-409. 被引量:9
  • 5朱菊华,杨新,李俊,施鹏飞.基于纹理分析的保细节平滑滤波器[J].中国图象图形学报(A辑),2001,6(11):1058-1064. 被引量:10
  • 6Barles G, Georgelin C. A simple proof of convergence for an approximation scheme for computing motions by mean curvature [J].Applied Numerical Mathematics, 1995, 32(2): 484~500
  • 7Evans L C, Soner H M, Souganidis P E. Phase transitions and generalized motion by mean curvature [J].Communications on Pure and Applied Mathematics, 1992, 45(9): 1097~1123
  • 8Gage M. On an area-preserving evolution equation for plane curves [J].Pure Application Math, 1986, 51(3): 51~62
  • 9Dolcetta I C, Vita S F, March R. Area-preserving curve-shortening flows: From phase separation to image processing [J].Interfaces and Free Boundaries, 2002, 31(4): 325~343
  • 10Malladid R, Sethian J A. Image processing: Flows under min/max curvature and mean curvature [J].Graphical Models and Image Processing, 1996, 58(2): 127~141

二级参考文献19

  • 1黄煦涛.二维数字信号处理Ⅱ[M].北京:科学出版社,1985..
  • 2李介谷 施鹏飞 等.图象处理技术[M].上海:上海交通大学出版社,1988..
  • 3徐建平.变分方法[M].上海:同济大学出版社,1998.103 -146.
  • 4[美]ChuiCK 程正兴 译.小波分析导论[M].西安:西安交通大学出版社,1994.65-68.
  • 5李岳生.样条与插值[M].北京:科学出版社,1982.1-20.
  • 6[1]Ping Liang, Y F Wang. Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection[A]. In: Proceedings of 6th International Conference on Computer Vision, 1998.193~220
  • 7[2]Hamid Krim, Yufang Bao. Nonlinear diffusion: A probabilistic view[A]. In: Proceedings of International Conference on Image Processing, 1999. :21~25
  • 8[3]Zhouchen Lin, Qingyun Shi. An anisotropic diffusion PDE for noise reduction and thin edge preservation[A]. In: Proceedings of International Conference on Image Analysis and Processing, 1999. 102~107
  • 9[4]Joachim Weickert. Efficient image segmentation using partial differential equations and morphology[OL]. Technical Report DIKU-TR_98/10 Department of Computer Science University of Copenhagen Universitetsparken 1 2100 Copenhagen Demnark. http://nj.citeseer.nj.nec.com
  • 10[5]J Koenderink. The structure of images[J]. Biological Cybernation, 1984, 50:363~370

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部