摘要
RR方法将动力学变量的时间演化作为希尔伯空间的几何问题来处理。RR方法给出了广义朗之万方程的形式解。对1维、2维和3维及费米子摸型以及自旋范德瓦尔斯模型求得{△_γ}和a_o(t)并进一步求得自相关函数(a_v(t)}和(b_γ(t)},从而求得动力学变量A(t),无规力F(t)、响应函数x_k(w)和动力学结构因子S_k(w)以及由无规流引起的内禀导电率σ_k(w)。
The method of RR treats the time evolution of dynamical variables as a geometric roblem in Hilbert space. The formal solution of the generalized Langevin equation was iven by it {Δ_γ} and a_0 (t) were obtained for the 1D, 1D and 3D many—fermion models and e spin van der Waals and the auto—correlation functions {a_γ(t)}and {b_γ(t)} were obined further, thus the dynamical variable A (t), random force F(t), response function X_kω), dynamic structure factor S_k(ω) and intrinsic conductivity σ_k(ω)from the random curents.
出处
《贵州大学学报(自然科学版)》
1993年第4期234-239,共6页
Journal of Guizhou University:Natural Sciences
关键词
递推关系方法
郎之万方程
量子力学
method of reccurence retations, generalizde Langevin eqaation, manyrmion model, spin van der Waals model