期刊文献+

过热汽温系统的RBF神经网络控制 被引量:10

RBF Neural Network Control on Super-heated Steam Temperature System
下载PDF
导出
摘要 采用RBF神经网络直接构成神经网络控制器,将在线学习和控制相结合,这种方法不需要增加另一个神经网络对系统进行在线辨识,也不需要预先确定神经网络控制器的结构。通过将该方法应用于电厂过热汽温系统的控制进行仿真研究并与常规PID串级控制系统进行比较,结果表明控制系统的性能得到较大的提高。 Using the RBF neural network as neural network controller, combining the on-line learning and controlling, a new neural network control method is presented, and another neural network for on-line system identification and determining the structure of neural network controller a prior is no need. The simulation for super-heated steam temperature control system using presented method is carried out. The results show that the control system performance is better than the conventional cascade control system.
出处 《系统仿真学报》 CAS CSCD 2004年第8期1828-1830,1834,共4页 Journal of System Simulation
基金 江苏省高校自然科学研究计划项目 南京工程学院科研基金项目(KXJ04070)。
关键词 径向基函数 神经网络 控制 电厂 过热汽温系统 radial basis function neural network control power plant super-heated steam temperature system
  • 相关文献

参考文献14

  • 1[1]Park J,Wsandberg I.Universal approximation using radial-basis-function networks [J].Neural Computation,1991,3(2):246-257.
  • 2Barry Gomm J,Ding Li Yu.Selecting Radial Basis Function Network Centers with Recursive Orthogonal Least Squares Training [J].IEEE Trans.Neural Networks,2000,11(2):306-314.
  • 3Sutanto E L,et al.Mean-tracking clustering algorithm for radial basis function centre selection [J].Int.J Control.1997,67(6):961-977.
  • 4Moody J E,Darken C.Fast Learning in Networks of Locally Tuned Processing Units [J].Neural Computation.1989,1(2):281-294.
  • 5Whitehead B A,Choate T D.Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction [J].IEEE Trans.Neural Networks,1996,7(7):1869-1880.
  • 6Chen S,Billings S A.Neural networks for nonlinear dynamic system modelling and identification [J].Int J.Control,1992,56(2):319-346.
  • 7Ale Leonardis,Horst Bischof.An efficient MDL-based construction of RBF networks [J].Neural Networks,1998,11(8):963-973.
  • 8LEE S,KIL R M.A Gaussian potential function network with hierarchically self-organizing learning [J].Neural Networks,1991,4(2):207-224.
  • 9Platt J.A resource-allocating network for function interpolation [J].Neural Computation,1991,3(2):213-225.
  • 10Kadirkamanathan V,Niranjan M.A function estimation approach to sequential learning with neural networks [J].Neural Computation,1993,5(4):954-975.

同被引文献128

引证文献10

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部