期刊文献+

层状裂隙岩体蠕变柔量估计的合理方法

REASONABLE METHOD TO ESTIMATE CREEP COMPLIANCE OF ROCKS JOINTED BY PARALLEL CRACKS
下载PDF
导出
摘要 基于Taylor模型方法和粘弹性断裂力学理论,推导了层状裂隙岩体的单轴、剪切以及体积蠕变柔量,并合理考虑了裂隙相互作用效应的影响,分析了层状裂隙岩体单轴蠕变和剪切蠕变的各向异性。计算分析指出,裂隙岩体的单轴蠕变柔量随裂隙密度参数的增加而增大,随裂隙倾角的增加而减小。考虑裂隙相互作用效应时,层状裂隙岩体的蠕变柔量明显大于不考虑裂隙相互作用的情况。该方法为通过室内岩石流变实验了解实际工程中裂隙岩体的蠕变特性提供了一种可能。 Based on Taylor model and viscoelastic fracture mechanics, a method is proposed to estimate the uniaxial, shear and volume creep compliance of rocks jointed by parallel cracks. First, the interaction of parallel cracks is neglected and the anisotropic creep compliance of Taylor media is computed. Then each single crack is placed in Taylor media to account for the influence of other cracks on its creep behavior. Based on the above analysis, the creep compliance of rocks jointed by parallel cracks is derived. The effect of interaction among cracks is taken into account and the creep anisotropy of cracked rocks is analyzed. According to the analysis results, uniaxial and shear creep compliance of cracked rocks increases with the increment of crack density parameter and decreases with the increment of crack dip. The creep compliance with account of interaction among cracks is obviously bigger than that without interaction among cracks. The proposed method makes it possible to estimate creep compliance of cracked rocks only by experimental study on rock samples in laboratory.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2004年第18期3044-3048,共5页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重点基础研究发展规划项目(973项目)(2002CB412707)资助课题。
关键词 岩体力学 裂隙岩体 蠕变柔量 裂隙倾角 裂隙密度 Anisotropy Cracks Creep Fracture mechanics Rocks Viscoelasticity
  • 相关文献

参考文献19

  • 1[1]Budiansky Bernard, O'Connell Richard. Elastic moduli of a cracked solid[J]. Int. J. Solids Structures, 1976, 12(1): 81~97
  • 2[2]Alan Hoenig. Elastic moduli of a non-randomly cracked body[J]. Int. J. Solids Structure, 1979, 15(2): 137~154
  • 3[3]Margolin L G. Elastic moduli of a cracked body[J]. Int. J. of Fracture,1983, 22(1): 65~79
  • 4[4]Horri H, Nemat N S. Overall moduli of solids with microcracks:load-induced anisotropy[J]. J. Mech. Phys. Solids, 1983, 31(2): 155~171
  • 5[5]Kemeny J, Cook N G W. Effective moduli, non-linear deformation and strength of a cracked solid[J]. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 1986, 23(2): 107~118
  • 6[6]Laws N, Brochenbrough J R. The effect of microcrack systems on the loss of stiffness of brittle solids[J]. Int. J. Solids Structure, 1986,23(9): 1 247~1 268
  • 7[7]Hu K X, Huang Y Estimation of the elastic properties of fractured rock masses[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1993, 30(4): 107~118
  • 8[8]Alan H. The behavior of a flat elliptical crack in an anisotropic elastic body[J]. Int. J. Solids Structure, 1983, 14(9): 925~934
  • 9[9]Igor T, Mark K. Anisotropic material with arbitrarily oriented cracks and elliptical holes: effective elastic moduli[J]. Int. J. of Fracture,1998, 92(1): 9~14
  • 10[10]Wu Kuangchong. On an elliptic crack embedded in an anisotropic material[J]. Int. J. Solids Structure, 2000, 37:4 841~4 857

二级参考文献45

共引文献423

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部