期刊文献+

具有对数型奇性核的I类积分方程解 被引量:3

Solution of Type Ⅰ integral equation with weak singular kernel of logarithm function
下载PDF
导出
摘要 在变形固体相互作用的问题中,某些物理量之间的关系确定,经常被转化为积分方程的数学表达.对于具有对数函数弱奇异性积分核的Fredholm型I类积分方程,解的性质主要取决于方程中已知函数的形式.本文推得了当已知函数为常数和幂函数时该积分方程的分析解,并且讨论了该解在定义域端点处的奇异特性. In the interaction problem of different parts of solid, the relation of some physics factors′ determining is often transformed to the mathematics expression of integral equation. The character of the solution depends on the known function of integral equation, as to the Type Ⅰ Fredholm integral equation with logarithm function singular integral kernel. For the known functions to be constant and power function, the equation solutions are deduced. And the singular analysis of solution is also presented if the variable is approaching two extremities of determine field.
作者 王利民
出处 《山东理工大学学报(自然科学版)》 CAS 2004年第3期1-7,共7页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(10272068) 山东省自然科学基金资助项目(Y2002A02)
关键词 对数型奇性核 积分方程 奇异性分析 幂函数 固体弹性理论 断裂力学 logarithm function singularity integral equation analysis of function singular character
  • 相关文献

参考文献10

  • 1Zwillinger Daniel. Handbook of differential equations[ M]. San Diego: Academic Press, 1998.
  • 2Kondo J. Integral Equations[M]. Tokyo Japan:Oxford University Press, Kodansha Ltd,1991.
  • 3徐世烺 赵国藩.混凝土断裂力学研究[M].大连:大连理工大学出版社,1991..
  • 4Muskhelishvili N I. Singular integral equations[M]. New York: Dover Publications,INC, 1992.
  • 5MuskhelishviliNI 赵惠元译.数学弹性力学的几个基本问题[M].北京:科学出版社,1958..
  • 6Budiansky B, Evans A G, Hutchinson J W. Fiber-matrix debonding effects on cracking in aligned fiber ceramic composites[ J ]. Int. J.Solids structures, 1995, 32: 315-328.
  • 7Tada H, Paris P C, Irwin G R. The stress analysis of crack handbook[M]. New York: ASME Press, 2000.
  • 8Budiansky Bernard, Amazigo C John. Toughening by aligned frictionally constrained fibers[J ]. Journal of Mechanics and physics of solids.1989,37(1) :93-109.
  • 9王利民,徐世烺.半无穷大裂纹端部粘聚力分析[J].应用数学和力学,2003,24(8):812-820. 被引量:1
  • 10Zabreyko P P,Koshelev A I. Integral equations: A Reference Text[M]. Leyden:Noordhoff Int. Publ., 1975.

二级参考文献8

  • 1赵国藩 徐世烺.大骨料全级配混凝土断裂韧度和断裂能[R]..国家七五科技攻关项目阶段成果报告[C].大连理工大学土木工程系,1989..
  • 2Bazant Z,Chen E P, Scaling of smlctural failure[J] . Applied Mechanics Review, 1997,50(10) :593--627.
  • 3XU Shi-lang, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture-Part I, II, Ⅲ [J]. International Journal of Pructure, 1999,98(2) : 111--103.
  • 4Weibull W. A statistical theory of the strength of materials[J] . Proceedinas of the Royal Swedish Institute for Engineering Research, 1939,153(1) : 1--55.
  • 5Karihaloo B L. Size effect in shallow and deep notched quasi-brittle structures [ J]. International Journal of Fracture, 1999,95(1/4) : 379--390.
  • 6Carpinteri A. Fractal naawe of material microstructure and size effects on apparent mechanical propoerties[J]. Mechanics of Materials, 1994,18(2) :89---101.
  • 7徐萃薇.计算方法引论[M].北京:高等教育出版社,1988..
  • 8徐世烺.混凝土断裂韧度的概率统计分析[J].水利学报,1984,(10):51-58.

共引文献13

同被引文献44

  • 1陈瑛,姜弘道,乔丕忠,冯新权.混凝土黏聚开裂模型若干进展[J].力学进展,2005,35(3):377-390. 被引量:7
  • 2王利民,任传波,徐世,赵熙强.一类Fredholm型弱奇性核积分方程展开解[J].物理学报,2006,55(2):543-546. 被引量:3
  • 3王利民,徐世烺,赵熙强.考虑软化效应的黏聚裂纹张开位移分析[J].中国科学(G辑),2006,36(1):59-71. 被引量:21
  • 4徐世烺 赵国藩.混凝土断裂力学研究[M].大连:大连理工大学出版社,1991..
  • 5王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版社,1989.248-249.
  • 6RAINEB KRESS, LAN H SLOAN. On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation[ J ]. Numerical Mathematic, 1993,66 : 199-214.
  • 7TADA H ,PARIS P C,LRWIN GR. The stress analysis of crack handbook[ M ]. New York: ASNE,2000.
  • 8哈富宽.断裂物理基础[M].北京:科学出版社,2000..
  • 9Rose L R F.Crack reinforcement by distributed springs.Journal of the Mechanics of Physics and Solids,1987,35(4):383~405
  • 10Lin G,Qi C S,Zhou H T.An analytical approach of the fictitious crack model for concrete.Engineering Fracture Mechanics,1994,47(2):269~280

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部