期刊文献+

三种垃圾填埋场单元模拟器对废物降解的对比试验 被引量:20

Experiment on comparing the results of degrading waste between three landfill simulators
下载PDF
导出
摘要 在最佳pH值、水分含量和反应温度下,比较了生物模拟器(CBL)和渗滤液回灌的模拟器(LRL)及传统卫生填埋场(CSL)的模拟器的沉降率、产气率和甲烷百分比、生化需氧量和化学需氧量等有机负荷、可生化降解性、重金属浓度和特定甲烷菌活度(SMA)的变化趋势.结合SMA的变化和产气峰值的时间,可以得出脂肪酸和糖类甲烷菌引起了第一次产气峰值,蛋白质和脂类甲烷菌催生了第二次产气峰值.CSL、LRL、CBL的沉降率分别为7.1%、43.3%和60.3%,产气率CBL最高可达1.26m3/d, LRL最高0.92m3/d, CSL则没有峰值,甲烷含量CBL稳定在73%,LRL稳定在51%,CSL含量很低且不稳定,SMA,有机负荷,有机负荷可生化降解性BOD/CODCr均为CBL表现最佳,可见生物处理效果上,生物反应器填埋场具有独特的优势和快速降解的作用. Optimum pH value, moisture content and temperature in which bioreactor landfill (CBL) simulator run best are achieved and in such conditions, its results were compared with the leachate-recirculated landfill (LRL) simulator and conservative sanitary landfill (CSL) simulator on waste settlement, biogas production and component, ogannic load (measured as biological oxygen demand and chemical oxygen demand), biodegradability, heavy metal concentrations and specific methanogenic activity(SMA). Linking SMA changes to peak value time of biogas yield, it can be summarized that methanogens of fatty acid and carbohydrate on their most optimum performances were responsible for the first peak value, and most optimum SMA of lipid and protein caused the appearance of the second peak. The settlement ratio of CSL, LRL and CBL were 7.1%, 43.3% and 60.3%, respectively. Highest biogas yield in CBL reached 1.26m3/d, and LRL 0.92m3/d, while CSL exhibited no peak value; methane percentages in CBL and in LRL were stabilized at 73%, 51%, and that in CSL fluctuated and lacked; SMA, organic load, biodegradability (BOD/CODCr) in CBL appeared most favorable, so the advantages of bioreactor landfill are distinct and prolific in biodecomposing solid waste.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2004年第4期474-479,共6页 China Environmental Science
基金 重庆市环境保护局环保研究基金(2002-19)
关键词 生物反应器垃圾填埋场 甲烷生成 甲烷产率 城市固体废物(MSW) 渗滤液循环 特定甲烷菌活度(SMA) landfill bioreactor methanogenesis methane production municipal solid waste leachate recirculation specific methanogenic activity (SMA)
  • 相关文献

参考文献12

  • 1Pohland F G, Kim J C. In situ anaerobic treatment of leachate in landfill bioreactors. [J]. Water Science Technology, 1999,40(8):203-210.
  • 2Pohland F G. Landfill bioreactor developments for solid waste management [A]. IAWQ Proc, 8th Int. Conf. on Anaerobic Digestion, 1997.59-66.
  • 3APHA. Standard methods for examination of water and wastewater [M]. Washington: American Public Health Association, 1992.
  • 4Owen W F, Stucky D C, Healy Jr J B, et al. Bioassay for monitoring biochemical methane potential and anaerobic toxicity[J]. Water Research, 1979,13:485-493.
  • 5Mostafa Warith. Bioreactor landffils: experimental and field results [J]. Waste Management, 2002,22:7-17.
  • 6Ghosh S. Solid-pHase methane fermentation of solid wastes [J]. J.Energy Resources Technol., 1985,107:402-405.
  • 7George T, Hilary T, Samuel A V. Integrated solid waste management [M]. Mc Graw-Hill Inc., 1993.
  • 8Lay Jiunn-Jyi, Li Yu-You, Noike Tatsuya. Developments of bacterial population and methanogenic activity in a laboratoryscale landfill bioreactor [J]. Wat. Res., 1998,32(12):3673-3679.
  • 9Christensen T H, Kjeldsen P. Basic biochemical processes in landfills [A]. In Christensen T H, Cossu R, Stegmann R (Fds.).Sanitary landfill: progress, technology and environmental impact[C]. London: Academic Press, 1989.29-49.
  • 10NopHaratana A, Clarke W P, Puammanappallil P C, et al.Evaluation of methanogenic activities during anaerobic digestion of municipal solid waste [J]. Bioresource Technology, 1998,64:169-174.

二级参考文献8

  • 1重庆大学.重庆市主城区垃圾收运系统及长生桥填埋场可行性研究[M].,1999,7..
  • 2重庆市政管理局.重庆市主城区环卫设施规划实施方案[M].,1998,1..
  • 3重庆市环境卫生监测站.重庆市垃圾成分及理化特性调查报告[M].,1998,8..
  • 4重庆市城市总体规划(1996—2020)
  • 5重庆大学,重庆市主城区垃圾收运系统及长生桥填埋场可行性研究,1999年
  • 6深圳下坪垃圾焚烧场,九七年度垃圾热分析,1998年
  • 7重庆市环境卫生监测站,重庆市垃圾成分及理化特性调查报告,1998年
  • 8重庆市政管理局,重庆市主城区环卫设施规划实施方案,1998年

共引文献30

同被引文献176

引证文献20

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部