期刊文献+

集成多分类器的人脸识别 被引量:1

Face Recognition by Combining Multiple Classifiers
下载PDF
导出
摘要 提出一种用组合多分类器融合局部信息进行人脸识别的方法。人脸识别过程中图像样本间的相似度可建模为“类内差”和“类间差”两种模式类,用这种思想在图像小波分解域的局部区域上构造弱分类器集,然后通过Boosting训练生成强分类器,最终的人脸匹配由多个弱分类器输出的加权和给出决策。实验结果表明,系统具有较高的识别率,对表情和光照变化具有很好的鲁棒性,而且对新个体有较好的扩展能力。 This paper proposes a face recognition method by combining multiple classifiers for information fusion. The similarity between pairs of faces can be modeled as two classes,intra-pattern and inter-pattern. Firstly this idea is used to construct weak learners in local area of wavelet domains. Then the boosting algorithm is used to train the strong classifiers. The final decision of matching is given by weighted combination of multiple weak classifiers. The experimental results show that the system is robust for variation of expression and illumination. The pretty high recognition rate can be achieved even on the new data set in which the individuals are unseen during training process.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第17期3-4,49,共3页 Computer Engineering
基金 国家高新技术研究发展计划"863"资助项目(2001AA413310)
关键词 人脸识别 特征提取 信息融合 集成分类 BOOSTING Face recognition Features extraction Information fusion Ensemble classifier Boosting
  • 相关文献

参考文献4

  • 1Belhumeur P N, Hespanha J P, Kricgman D J. Eigenfaces vs.Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720
  • 2Heiselc B, Verri A, Poggio T. Learning and Vision Machines. Proceedings of the IEEE, Visual Perception: Technology and Tools, 2002,90(7): 1164-1177
  • 3Schapire R E, Singer Y. Improved Boosting Algorithms Using Confidence-rated predictions. Machine Learning. 1999,37(3):297-336
  • 4Viola P, Jones M. Fast and Robust Classification Using Asymmetric AdaBoost and a Detector Cascade. Neural Information Processing Systems, 2001

同被引文献4

  • 1Marcialis G L,Roli F.Fusion of LDA and PCA for Face Verification[C] //Proc.of the Workshop on Biometric Authentication.[S.l.] :Springer,2002:30-39.
  • 2Yu Hua,Yang Jie.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 3Lu Juwei,Plataniotis K N,Venetsanopoulos A N.Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition[J].Pattern Recognition Letter,2005,26(2):181-191.
  • 4郭志波,刘华军,郑宇杰,杨静宇.基于PCA和LDA统一化原理的增强型线性鉴别分析准则[J].中国图象图形学报,2008,13(4):702-708. 被引量:3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部