期刊文献+

仿生法制备功能陶瓷薄膜材料(英文) 被引量:2

BIO-INSPIRED CERAMIC PRCESSING:AN EXAMPLE OF SrTiO_3 DEPOSITION
下载PDF
导出
摘要 介绍了一种新的功能陶瓷薄膜制备方法———仿生法。该方法不同于传统的湿化学方 法,如水热合成法、熔胶凝胶法、电化学法等,其突出特点是无外加电场,不需要调制熔胶或者 凝胶,可以在常温常压下合成。该方法涉及两个关键点:基板表面的修饰和溶液条件的控制。 我们在基板(单晶硅,玻璃等)的表面通过化学吸附的方式生长了一层自组织单分子层,然后将 这层单分子层部分暴露在紫外光下,使暴露部分发生光化学反应,从而生成与未暴露部分不同 的新的官能团。以此为模板,在适合的溶液条件下(溶液的过饱和度等),通过溶液与模板表面 官能团之间的选择性的物理化学作用,实现了从溶液中直接制备位置、形貌、结晶形态等可控 的功能陶瓷薄膜。作者以SrTiO3为例简单介绍了这种新的合成方法。 The so-called bio-inspired ceramics processing is usually a solution-based process that mimicks the nature′s template-mediated mineralization method, and has been developed to produce ceramic thin films, to create specific microstructures, to fabricate patterns through site-selective deposition, to control the crystallization, or to achieve intelligent functions such as self-healing and self-cleaning. This benign, low-temperature process is carried out in (aqueous) solution, and can be easily applied to many surfaces, from ceramics, glass, fibers, to flexible organic membranes, some of which may be incapable to be used at high temperatures. Two key points are involved in this process: surface modification and solution conditions. In this review, surface modification with self-assembled monolayers, and control of solution conditions such as nucleation/growth in aqueous solutions, are described for SrTiO_3 as an example.
出处 《陕西科技大学学报(自然科学版)》 2004年第5期48-59,共12页 Journal of Shaanxi University of Science & Technology
关键词 仿生法 功能陶瓷薄膜材料 制备方法 自组织单层 光化学反应 陶瓷氧化物 水溶液 biomineralization bio-inspired self-assembled monolayer photocleavage ceramics oxide patterning aqueous solution
  • 相关文献

参考文献50

  • 1(a) Bauerlein, E. Angew. Chem. Int. Ed. , 2003, 42: 614. (b) Mann, S.. Biomimetic Materials Chemistry[M]. VCH, New York, 1996: 1~40. (c) Aizenberg, J., Muller, D. A., Grazul, J. L.,et al. Science, 2003, (299): 1205.
  • 2(a) Zharnikov, M., Grunze, M. J. Vac. Sci. Technol. B, 2002, (20): 1793. (b) Wagner, A. J., Carlo, S. R., Vecitis, C, et al. Langmuir, 2002, (18): 1542. (c) Wagner, A. J., Han, K. P., Vaught, A. L., et al. J. Phys. Chem. B, 2000, (104):3291. (d) Carlo, S.
  • 3(a) Evans, C. , Wade, N. , Pepi, F. , etal. Anal. Chem. ,2002, (74): 317. (b) Shen, J. W. , Grill, V., Evans, C., etal. J.Mass Spectrom. ,1999, (34):354. (c) Cyganik, P., Postawa, Z., Meserole, C. A. et al. Nucl. Instrum. Meth. B, 1999,(148): 137.
  • 4(a) Saito, N. , Hayashi, K. , Sugimura, H. ,et al. J. Mater. Chem, 2002, (12): 2684. (b) Yang, Z. P. , Frey, W. , Oliver,T.,et al. Langmuir, 2000, (16): 1751. (c) Hutt, D. A., Cooper, E., Leggett, G. J. J. Phys. Chem. B, 1998, (102): 174.(d) Dressick, W.
  • 5(a) Masuda Y. , SugiyamaT., Lin H. ,etal. Thin Solid Films, 2001, (382):153. (b) Masuda, Y., Seo, W.S., Koumoto, K.Langmuir, 2001, (17): 4876. (c) Masuda, Y. , Jinbo, Y., Yonezawa, T.,et al. Chem. Mater, 2002, (14): 1236.
  • 6(a) Gao, Y. , Masuda, Y., Yonezawa, T.,etal. J. Ceram. Soc. Jpn. ,2002, (110): 379. (b) Gao, Y.-F.. Masuda, Y.,Yonezawa, T. ,et al. Chem. Mater, 2002, (14): 5006. (c) Gao, Y.-F. , Masuda, Y. , Koumoto, K. Chem. Mater, 2003, (15):2399. (d) Gao, Y.-F., Masu
  • 7(a) Banfield, J. F. , Welch, S. A., Zhang, H. Z.,et al. Science, 2000, (289): 751~754. (b) Penn, R. L., Banfield, J. F.Science, 1998, (281): 969~971. (c) Chemseddine, A. Moritz, T., Eur. J. Inorg. Chem, 1999, 235~245. (d) Bailey, J. K.,Brinker, C. J.,
  • 8Koumoto, K. , Seo, S., Sugiyama, T.,et al. Chem. Mater, 1999, (11): 2305.
  • 9Mino, N., Ozaki, S., Ogawa, K.,et al. Thin Solid Films, 1994, (243): 374.
  • 10(a) Zhu, P. X. , Masuda, Y., etal. J. Colloid Interface Sci, 2001, (243): 31. (b) Zhu, P. X., Masuda, Y., etal. J. Am. Ceram. Soc, 2003, (86): 782.

同被引文献51

  • 1张莉莉,赵朴素,张维光,杨绪杰,汪信,陆路德.层状新型纳米复合功能材料研究进展[J].化学世界,2005,46(10):632-636. 被引量:6
  • 2郝彦忠,韩文涛.聚3-甲基噻吩及聚3-己基噻吩修饰钛酸盐纳米管的光电化学性能研究[J].化学学报,2006,64(18):1871-1875. 被引量:5
  • 3Guo Min, Lu Gaoqing, Zhu Xianfang. Fabrication of multilayer films of N-doped titania nanosheets and hematite nanocubes via layer by layer assembly [ J ]. Colloids and Surfaces : A : Physicochemical and Engineering Aspects, 2012,395:100-104.
  • 4Bo Li, Yukiya Hakuta, Hiromichi Hayashi. Synthesis of potassium titanoniobate in supereritical and subcritical water and investigations on its photocatalytie performance [ J ]. Journal of Supereritieal Fluids, 2006,39 ( 1 ) : 63- 69.
  • 5Takahashi H, Kakihana M, Yamashita Y, et al. Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polyme- rizable complex method [ J ]. Journal of Alloys Compound, 1999,285 (1/2) :77-81.
  • 6Bo Li, Yukiya Hakuta V, Hiromichi Hayashi. The synthesis of titanoniobate compound characteristic of various particle morphologies through a novel solvothermal route [J]. Materials Letters,2007,6(18) :3791-3794.
  • 7Guo Guangsheng, He Chaonan, Wang Zhihua. Synthesis of titania and titanate nanomaterials and their application in environmental analytical chemistry [ J ]. Talanta,2007,72 : 1687-1692.
  • 8Kukovecz Kos, Maria Hodos, Endre Horvath. Oriented crystal growth model explains the formation of titania nanotubes [ J ]. J Phys Chem: B,2005,109 : 17781-17783.
  • 9Weo Mingdeng, Yoshinari Konishi, Haoshen Zhou. A simple method to synthesize nanowires titanium dioxide from layered titanate particles [ J ]. Chemical Physics Letters, 2004,400:231-234.
  • 10Morgado Edisson Jr, Marco A S, De Abreu. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content [ J ]. Solid State Sciences, 2006(8) :888-900.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部