摘要
关联规则挖掘的关键在于频繁项目集的求解 ,为了能够在含有数值类型数据的交易数据库中快速求解含有多值的频繁项目集 ,拓展了含有多种数值的交易数据库定义 .在此基础上 ,根据树的思想 ,建立含有交易项和交易数量的树 ,并结合Apriori算法和智能搜索 ,提出在各个较小的树枝路径中求解频繁项目集求解方法FABCTA(FastAlgorithmByCandidateTransactionTreeandApriori) .通过采用真实数据实验对比 。
It is very important to get the frequent item set in the associate rule mining. In order to fast obtain the frequent item set from a database that includes multiple values, the definition of transaction database was extended. By the tree concept, a special tree was built in which every node is formed by item and item's count. On the foundation of apriori algorithm and artificial intelligent search, FABCTA (fast algorithm by candidate transaction tree and apriori) was presented to solve the frequent item set in small branches of tree. By the test on real data, FABCTA is more efficient than apriori algorithm.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2004年第8期791-796,共6页
Journal of Beijing University of Aeronautics and Astronautics
关键词
数据库
树
规则
搜索理论
APRIORI算法
Algorithms
Artificial intelligence
Composition
Database systems
Trees (mathematics)