期刊文献+

充分非线性Burgers方程的最优控制 被引量:1

Optimal control of sufficient nonlinear Burgers equation
下载PDF
导出
摘要 研究充分非线性Burgers方程:ut-kuxx+unux=0在Dirichlet边界条件下的最优控制问题.给出了边界条件下的充分非线性Burgers方程解的存在性以及解的稳定性;并给出了充分非线性Burgers方程的最优控制;证明了充分非线性Burgers方程的最优解的存在性.为进一步研究充分非线性Burgers方程的理论和工程技术应用提供了理论基础和依据. The optimal control of sufficient nonlinear Burgers equation is considered on the Dirichlet boundary condition. Firstly, the solution of sufficient nonlinear Burgers equation and stability of the solution of sufficient nonlinear Burgers equation are given. Then, optimal control sufficient nonlinear Burgers equation is described. Finally the existence of the optimal solution is considered. The results may contribute to further theoretical research or engineering applications.
出处 《江苏大学学报(自然科学版)》 EI CAS 2004年第5期413-416,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(100071) 教育部骨干教师基金资助项目(2000-65-31)
关键词 充分非线性Burgers方程 最优控制 最优解 sufficient nonlinear Burgers equation optimal control optimal solution
  • 相关文献

参考文献2

二级参考文献4

共引文献7

同被引文献8

  • 1ITO K,RAVINDRAN S S.A reduced-basis method for control problems governed by PDES[J].Control and Estimation of Distributed Parameter Systems,International Series of Numerical Mathematicas,1998,126:153-168.
  • 2ATWEIL J A,KING B B.Proper orthogonal decomposition for reduced basis feedback controller for parabolic equation[J].Mathematical and Modelling,2001,33:1-19.
  • 3HU Chang-bing,ROGER Temam.Robust control the Ku-ramoto-Sivashinsky equation[J].Dynamics of Continuous,Discrete and Impulsive Systems Series B:Application & Algorithms,2001,8:315-338.
  • 4BOSKOVIC P M,KRSTIC M,LIU W J.Boundary control of an unstable heat equation via measurement of domain-averaged temperature[J].IEEE Trans Automat Control,2001,46:2022-2028.
  • 5KUNISCH K,VOLKEIN S.Control of Burgers equation by a reduced-order approach using proper orthogonal decomposition[J].Journal of Optimalization Theory and Application,1999,102(2):345-371.
  • 6PAZY.Semigroups of Linear Operators and Applications to Partial Differential Equation[M].Springer-Verlag,1983.
  • 7ENRIQUE Zuazua.Controllability of partial differential equation and its semi-discrete approximations[J].Discrete and Continuous Dynamical Systems,2002,8(2):45-49.
  • 8田立新,赵志峰.耗散KdV方程的小波近似惯性流形及数值分析[J].江苏理工大学学报(自然科学版),2002,23(1):39-43. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部