期刊文献+

一种改进的连续属性全局离散化算法 被引量:1

Improved global discretization algorithm of continuous attributes
下载PDF
导出
摘要 连续属性的离散化问题是粗糙集理论研究的一个重要内容,通过对一种局部离散化方法的改进,提出了全局的离散化算法。利用粗糙集理论,首先定义一致性的度量(辨别函数),修改了基于“最小描述长度准则”的离散化算法,实现了全局离散,弥补了前者引入不一致的缺陷;在保持数据一致性的前提下,进一步分析了离散中分割点的冗金并进行了约简。实验通过基于粗糙集的分类工具,在几组典型数据集上得到了预期的满意结果,验证了该算法的有效性。 The problem of discretization of continuous attributes is an important issue in the research of rough sets theory. By modifying the local method that is based on the MDLPC criterion with the help of rough sets theory, a global discretization algorithm is proposed. In the first stage, it modifies the criterion of selecting the best cut point in the MDLPC method, and makes the MDLPC method globalized by introducing inconsistency checking based on rough set theory to preserve the fidelity of the original data. Then the reduction of cut points is performed, which will not change the consistency level and lead to small size learning model. The algorithm is tested on several data sets, and the results are satisfactory, which proved its effectiveness.
出处 《电机与控制学报》 EI CSCD 北大核心 2004年第3期268-270,288,共4页 Electric Machines and Control
关键词 粗糙集理论 学习算法 连续属性 全局离散化算法 discretization continuous attributes rough sets MDLPC consistency
  • 相关文献

参考文献8

  • 1SUSMAGA R. Analyzing discretizatious of continuous attributes given a monotonic discrimination function[J]. Intelligent Data Analysis, 1997, 1(1-4): 157-179.
  • 2DOUGHERTY J, KOHAVI R. Supervised and unsupervised discretization of continuous features[A]. In: Proceedings of the 12th International Conference on Machine Learning[C].Tahoe City, CA: Morgan Kaufmann Publishers, 1995:194- 202.
  • 3CHMIELEWSKI M R, GRZYMALA-BUSSE J W. Global discretization of dontinuous dttributes as preprocessing for machine learnin[J]. International Journal of Approximate Reasoning, 1996, 15:319-331.
  • 4WU X D. Correspondence-fuzzy interpretation of discretized interval[J]. IEEE Transaction on Fuzzy Systems, 1999, 7(6):753-759.
  • 5MUHLENBACH F, RAKOTOMALALA R. Multivariate supervised discretization: a neighborhood graph approach[A].In: 2002 IEEE International Conference on Data Mining[C].Maebashi City, Japan. 2002. 314-321.
  • 6FAYYAD U M, IRANI K B. On the handling of continuousvalued attributes in decision tree generation[J]. Machine Learning, 1992, 8: 87-102.
  • 7PAWLAK Z. Rough sets[J]. Communications of the ACM,1995, 38(11): 89-95.
  • 8黄金杰,李士勇.一种基于粗糙集的决策规则综合方法[J].电机与控制学报,2003,7(3):242-247. 被引量:4

二级参考文献9

  • 1PAWLAK Z. Rough sets-theoretical aspects of reasoning about data[M]. Doredrcht: Kluwer Academic Publishers, 1991.
  • 2PAWLAK Z. Rough sets and intelligent data analysis [J]. International Journal of Information Sciences, 2002, 147, (Issue: 1-4), 1-12.
  • 3SLOWINSKI R. Rough set approach to decision analysis [J]. AI Expert, 1995, 10(3):19-25.
  • 4SKOWRON A, POLKOWSKI L. Synthesis of decision systems from data tables [A]. Rough Sets and Data Mining [C]. Boston: Kluwer Academic Publishers, 1997. 259-299.
  • 5SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[A]. Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory [C]. Dordrecht: Kluwer Academic Publishers, 1992. 331-362.
  • 6WROBLEWSKI J. Finding minimal reducts using genetic algorithms[A]. Proceedinos of the International Workshop on Rouoh Sets Computino at Second Annual Joint Conference on Information Sciences(JCIS' 95) [C]. Wrightsville Beach, North Carolina: Springer Verlag, 1995. 186-189.
  • 7SKOWRON A. Synthesis of adaptive decision systems from experimental data[A]. Proc Fifth Scandinavian Conference on Artificial in Telligence (SCAI' 95)[C].Jrondheim, Norway, Amsterdan:IOS Press, 1995. 220-238.
  • 8BAZAN J. A comparison of dynamic non-dynamic rough set methods for extracting laws from decision tables [A]. Rough Sets in Knowledge Discovery 1: Methodology and Applications [C]. Heidelberg: Physica-Verlag, 1998. 321-365.
  • 9黎明,张化光.基于粗糙集的神经网络建模方法研究[J].自动化学报,2002,28(1):27-33. 被引量:35

共引文献3

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部