期刊文献+

MTGase聚合的酪蛋白酸钠生物聚合物的物化性质 被引量:1

Physicochemical Properties of MTGase-induced Biopolymers of Sodium Caseinate
下载PDF
导出
摘要 研究了微生物转谷氨酰胺酶 (MTGase)对酪蛋白酸钠 (SC)的聚合作用 ,以及相应形成的生物聚合物的一些物化性质 ,包括分子质量范围、粘度及热稳定性等 .SDS PAGE和GPC分析显示 ,SC经MTGase聚合后 ,生成分子质量更高的生物聚合物 .MTGase的催化时间不同 ,生成的生物聚合物分子质量及其分布也有所不同 .布拉班德粘度计分析显示 ,在相同蛋白质量分数下 ,经MTGase聚合形成的SC -生物聚合物溶液的表观粘度显著高于SC溶液的表观粘度 (达 2~ 4倍 ) .加热处理实验显示 ,SC -生物聚合物溶液的热稳定性显著高于未经聚合的SC溶液 ,而DSC分析则显示不同温度下MTGase聚合形成的SC -生物聚合物的耐热性能有所不同 ,更高温度 (5 0℃ )下形成的生物聚合物的耐热性能更强 (与 37℃相比 ) . The polymerization process of sodium caseinates (SC) induced by microbial transglutaminse (MTGase) and some physicochemical properties of the new-forming biopolymers such as the relative molecular mass, the viscosity and the heat stability were investigated. SDS-PAGE and GPC analyses showed that biopolymers with higher molecular mass can be produced after the polymerization of SC induced by MTGase. The relative molecular masses and their distributions of the biopolymers change with the incubation time with MTGase. Brabender analysis shows that the apparent viscosity of SC-biopolymer solution is 2~4 times that of SC solution with the same protein mass fraction. Heat-treatment experiment shows that the heat stability of SC-biopolymer solution is markedly higher than that of SC solution. DSC analysis indicates that the heat resistance of SC-biopolymers polymerized at different temperatures is variable, and better heat resistance will be obtained at a highter temperature (50℃) rather than at 37℃.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第9期54-58,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目 (2 0 30 6 0 0 8) 华南理工大学自然科学基金资助项目 (E5 32 12 76 )
关键词 酪蛋白酸钠 微生物转谷氨酰胺酶 生物聚合物 物化性质 sodium caseinate microbial transglutaminase biopolymer physicochemical property
  • 相关文献

参考文献7

二级参考文献37

  • 1Traore F, Meunier J-C. Cross-linking activity of placental FXIIIa on whey proteins and caseins[J].J Agric Food Chem, 1992,40:399-402.
  • 2Kato A, Matsuda T et al. Determination of hydrophobity using a sodium dodecyl sulfate binding method[J].J Agric Food Chem, 1984, 32(2):284-287.
  • 3Larre C, Kedzior Z M et al. Action of transglutaminase on an 11S seed protein (Pea Legumin): influence of the substrate conformation[J]. J Agric Food Chem,1992, 40:1121-1126.
  • 4Ikura K, Komitani T, Yoshikawa M. Crosslinking of casein components by transglutaminase[J]. Agric Biol Chem 1980, 44 (7) : 1567-1573.
  • 5Ikura K, etal. Crosslinking of soybean 7S and llS proteins by transglutaminase[J].Agric Biol Chem,1980,44(12):2979-2984.
  • 6Traore F, Meunier J-C. Cross-linking activity of placental FXIIIa on whey proteins and caseins[J]. J Agric Food Chem, 1992, 40:399-402.
  • 7Kurth L, Rogers P J. Transglutaminase catalyzed cross-linking of myosin to soya protein, casein and gluten[J].J Food Sci, 1984,49:573-576.
  • 8Yildirim M, Hettiarachchy N S. Biopolymers produced by cross-linking soybean 11s globulin with whey proteins using transglutaminase[J]. J Food Sci, 1997,62:270-275.
  • 9Folk J E, Cole P W. Structural requirements of specific substrates for guinea pig liver transglut~inase[J]. J Biol Chem, 1965, 240(7) :2951-2960.
  • 10Han X-Q, Damodaran S. Thermodynamic compatibility of substrate proteins affects their cross-linking by transglutaminase[J].J Agric Food Chem 1996,44:1211-1217.

共引文献53

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部