期刊文献+

一类泛函极小元的H^2收敛性 被引量:1

H^2 Convergence of the Minimizers for a Class of Functionals
下载PDF
导出
摘要  本文证明了一类泛函Eε(u,G)于集合H2g(G,C)中的极小元uε当ε→0时,在H2中收敛到以g为边值的G上的双重调和映射. Let u_ε be minimizers for the functional E_ε(u,G) in H^2_g(G,C). It is proved that u_ε convergent to the double harmonic map in H^2 as ε→0.
作者 雷雨田
出处 《南京师大学报(自然科学版)》 CAS CSCD 2004年第3期9-11,共3页 Journal of Nanjing Normal University(Natural Science Edition)
基金 数学天元基金(A0324628) "211"工程重点学科建设资助项目.
关键词 泛函的极小元 收敛性 双重调和映射 minimizer of functional, convergence, biharmonic map
  • 相关文献

参考文献4

  • 1Bethuel F, Brezis H, Helein F. Asymptotics for the minimization of a Ginzburg-Landau functional[J]. Calc Var PDE,1993,1(2):123-148.
  • 2Fonseca I, Manteguzza C. Second order singular perturbation models for phase transitions[J]. SIAM J Math Anal,2000,31(5):1121-1143.
  • 3Tolksdorf P. Regularity for a more general class of quasilinear elliptic equations[J]. J Diff Equa,1984,51(1):126-150.
  • 4雷雨田.具变系数的Ginzburg-Landau泛函的径向极小元[J].南京师大学报(自然科学版),2004,27(1):1-6. 被引量:4

二级参考文献10

  • 1Du Q, Gunzburger M. A model for superconducting thin films having variable thickness[J]. Physica D, 1993,69:215-231.
  • 2Bethuel F, Brezis H, Helein F. Ginzburg-landau Vortices[ M]. Biddaauser. 1994.
  • 3Ding S J, Liu Z H. On the zeros and asymptotic behavior of minimizers to the Ginzburg-landau functional with variable coefficient[J]. J Partial Diff Eqs, 1997,10:45-64.
  • 4Bethuel F, Brezis H, Helein F. Asymptotics for the minimization of a Ginzburg-landau functional[J]. Calc Var PDE, 1993, 1 :123-148.
  • 5Struwe M. An asymptotic estimate for the Ginzburg-landau model[J]. C R Acad Sci Paris, 1993,317:677-680.
  • 6Du Q, Gunzburger M. A model for superconducting thin films having variable thickness[J]. Physica D,1993,69:215-231.
  • 7Bethuel F, Brezis H, Helein F. Ginzburg-Landau Vortices[M]. Birkhauser.1994.
  • 8Ding S J, Liu Z H. On the zeros and asymptotic behavior of minimizers to the Ginzburg-Landau functional with variable coefficient[J]. J Partial Diff Eqs,1997,10:45-64.
  • 9Bethuel F, Brezis H, Helein F. Asymptotics for the minimization of a Ginzburg-Landau functional[J]. Calc Var PDE,1993,1:123-148.
  • 10Struwe M. An asymptotic estimate for the Ginzburg-Landau model[J]. C R Acad Sci Paris,1993,317:677-680.

共引文献3

同被引文献8

  • 1Lin F H.On the Dirichlet problem for minimal graphs in hyperbolic space[J].Invent Math,1989,96:592-612.
  • 2Daskalopoulos P,Hamilton R.Regularity of the free boundary for the n-dimensional porous medium equation[J].J Amer Math Soc,1998,11:899-965.
  • 3Daskalopoulos P,Hamilton R,Lee K.All time C∞-Regularity of the interface in degenerated diffusion:a geometric approach[J].Duke Math J,2001,108:295-327.
  • 4Hong J X.Recent developments of realization of surfaces in R^3[J].Studies in Advanced Mathematics,2001,20:47-62.
  • 5Oleǐnik O A,Radkevic E V.Second Order Equations with Nonnegative Characteristic Form[M].New York:American Mathematical Society,Rhode Island and Plenum Press,1973.
  • 6Chen Z C.The Keldys-Fichera boundary value problem for a class of nonlinear degenerate elliptic equations[J].Acta Math Sinica,1993,9(2):203-211.
  • 7雷雨田.具变系数的Ginzburg-Landau泛函的径向极小元[J].南京师大学报(自然科学版),2004,27(1):1-6. 被引量:4
  • 8何跃.一类二阶退化半线性椭圆型方程边值问题的适定性及解的正则性[J].数学年刊(A辑),2004,25(2):225-242. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部