摘要
图G=(V,E)的一个正常着色就是将G的顶点划分为独立集,或称之为色类,记为 ={V1,V2,…,Vk}.对于任一色类Vi中的点v,如果它与其余色类中至少一个点相邻,则v被称为是满色的.如果在一个正常着色中,所有点都是满色的,则称这样的着色是满着色.如果一个图存在满着色,定义图的满着色数为使得图存在满着色的最小颜色数,记为χf(G).另外,记ψf(G)为使图存在满着色的最大颜色数.在这篇文章中,我们研究了一些乘积图的满着色,得出一些关于正则图的满着色的结果.
A coloring of a graph G=(V,E) is a partition ={V_1,V_2,…,V_k} of the vertices of G into independent sets or color classer. A vertex v∈V_i is called colorful if it is adjacent to at least one vertex in every color class V_j,i≠j. A fall coloring is a coloring in which every vertex is colorful. If a graph has a fall coloring, we define the fall chromatic unmber (fall achromatic number) of G, denoted χ_f(G)(ψ_f(G)) to equal the minimum (maximum) numbers of colors used in a fall coloring of G, respectively. In this paper we study fall coloring of cartesian products and get some results on the fall colorings of regular graphs.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
2004年第3期17-21,共5页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10371055).
关键词
着色
乘积图
正则图
fall coloring, cartesian products, regular graph