期刊文献+

计算Moore-Penrose逆的基于矩阵分裂的迭代法 被引量:1

Iterative Method for M-P Inverse Based on Matrix Splittings
下载PDF
导出
摘要  本文给出了使用基于矩阵分裂A=M-N的迭代格式Xk+1=M+NXk+M+(k=0,1,2,…)计算矩阵A∈Cm×n的Moore Penrose广义逆A+的迭代法收敛的充要条件以及满足收敛性条件的矩阵M的取法. In this paper, a necessary and sufficient condition for the convergence of iterative method X_(k+1)=M^+NX_k+M^+(k=0,1,2,…) for the Moore-Penrose inverse of A∈C^(m×n) is establised, and the choice of the matrix M satisfying the convergence condition is also given.
作者 黄燕丽
出处 《南京师大学报(自然科学版)》 CAS CSCD 2004年第3期40-42,共3页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 Moore-Penmse逆 迭代法 收敛 Moore-Penrose inverse, iterative method, convergence
  • 相关文献

参考文献10

  • 1Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge: Cambridge University Press,1985.
  • 2Berman A, Neumann M. Proper splittings of rectangular matrices[J], SIAM J Appl Math,1976,31(2):307-312.
  • 3Berman A, Neumann M. Consistency and splittings[J]. SIAM J Numer Anal,1976,13(6):877-888.
  • 4Neumann M. Subproper splittings of rectangular matrices[J]. Lin Alg Appl,1976,14(1):41-51.
  • 5Meyer C D, Plemmons R J. Convergent power of a matrix with application to iterative methods for singular systems[J]. SIAM J Numer Anal,1977,14(2):699-705.
  • 6Hanke M, Neumann M. Preconditioning and splittings for rectangular systems[J]. Numer Math,1990,57(1):85-95.
  • 7Chen Xin, Wang Wei, Song Yongzhong. Splittings based on the outer inverses of matrices[J]. Appl Math Comput,2002,132(2):353-368.
  • 8Wei Yimin, Li Xiezhang, Wu Hebing. Subproper and regular splittings for restricted rectangular linear systems[J]. Appl Math Comput,2003,136(2):535-547.
  • 9何旭初 孙文瑜.广义逆矩阵引论[M].南京:江苏科学技术出版社,1990..
  • 10陈旭洲,陈果良.关于长方矩阵加权Drazin逆的一种分裂法[J].高校应用数学学报(A辑),1993(1):71-78. 被引量:6

二级参考文献9

  • 1Wang Guorong,J Comput Math,1990年,8卷,4期,353页
  • 2匡蛟勋,高等学校计算数学学报,1982年,2期
  • 3匡蛟勋,上海师范大学学报,1982年,3期
  • 4乔三正,高等学校计算数学学报,1981年,2期
  • 5乔三正,上海师范学院学报,1981年,2期
  • 6陈旭洲,Lin Alg Appl
  • 7陈旭洲,高等学校计算数学学报
  • 8Wang Guorong
  • 9陈旭洲

共引文献27

同被引文献21

  • 1HEINIG G,ROST K.Algebraic Methods for Toeplitz-like Matrices and Operators[M].Boston:Birknauser,1984.
  • 2GOHBERG I,KOLTRACHT I,LANCASTER P.Efficient solution of linear systems of equations with recursive structure[J].Linear Algebra Appl,1986,80:81-113.
  • 3GOHBERG I,KAILATH T,KOLTRACHT I,et al.Linear complexity parallel algorithms for linear systems of equations[J].Linear Algebra Appl,1987,88:271-316.
  • 4BOROS T,SAYED A,KAILATH T.Structured matrices and unconstrained rational interpolation problems[J].Linear Algebra Appl,1990,121:73-109.
  • 5HEINIG G.Inversion of generalized Cauchy matrices and other classes of structures matrices,in linear algebra for signal processing[J].Math Appl,1994,69:95-114.
  • 6SAVED A H,KAILATH T,LEV-ARI H,et al.Recursive solutions of rational interpolation problems via fast matrix factorization[J].Integral Equations Oper Theory,1994,20:84-118.
  • 7KNUTH D E.The art of computer programming[J].Reading 1972,1:33-39.
  • 8MUIR T.A Treatise of the Theory of Determinants[M].New York:Academics Press,1933.
  • 9SCHECHTER S.On the inversion of certain matrices[J].Math Tables Aids Comput,1959,13(66):73-77.
  • 10VAVRIN Z.Confluent Cauchy and Cauchy-Vandermonde matrices[J].Linear Algebra Appl,1997,258:271-293.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部