摘要
讨论在二维情况下,多孔介质中不可压缩流体的可混溶驱动问题,它是两个偏微分方程的耦合系统,压力方程是椭圆的,而饱和度方程是以对流为主的抛物型的.压力方程和饱和度方程都用配置法来逼近,并且证明了数值解的存在唯一性,最后得到了最优阶L2模误差估计.
Miscible displacement of one incompressible fluid by another in a porous medium is modeled by a coupled system of two partial differential equations in two dimensions. The pressure equation is elliptic, while the concentration equation is parabolic but normally covenction-dominated. They are approximated by a collocation method, and the existence and uniqueness of it' s solution are proved. Optimal order error estimate is demonstrated.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2004年第3期21-26,共6页
Journal of Shandong University(Natural Science)
基金
教育部博士点基金资助项目(1999042215)
关键词
不可压缩
配置法
误差估计
incompressible
collocation method
error estimate