期刊文献+

多层前向神经网络带正则化因子的算法

Regularizer for LLLS algorithm in feedforward multilayered neural networks
下载PDF
导出
摘要 针对权衰减递推最小二乘算法(trueweightdecayRLS,TWDRLS)每迭代一步计算复杂度和存储要求很大,基于局部线性最小二乘算法(locallinearizedleastsquaresalgorithm,LLLS)与正则化因子,给出了多层前向神经网络带正则化因子的LLLS算法,大大减小了TWDRLS算法每迭代一步计算的复杂度和存储量。实验表明,改进的算法提高了原LLLS算法的鲁棒性和泛化能力,其性能接近TWDRLS算法。 The true weight decay RLS(TWDRLS) algorithm achieves a good performance at the expense of much greater computational complexity and storage requirements. A local linearized least squares algorithm(LLLS) together with regularizer is used for training multilayer feedforward neural networks. It can greatly decrease computational complexity and storage requirements. By simulation, it is proved that the modified algorithm can improve the robustness and generalization ability of LLLS. Its performance is approximate to that of the TWDRLS.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第9期1312-1314,共3页 Systems Engineering and Electronics
关键词 正则化 递推最小二乘算法 泛化能力 局部线性最小二乘算法 regularization recursive least squares algorithm generalization ability local linearized least squares algorithm
  • 相关文献

参考文献7

  • 1Chi-Tat Leung,Tommy W S Chow,Adaptive Regularization Parameter Selection Method forEnhancing Generalization Capability of Neural Networks[J].Artifical Intelligence,1999,107:347-356.
  • 2setiono R.A Penalty-Function Approach for Pruning Feedforward Neural Networks[J]. Neural Computation,1997, 9:185-204.
  • 3Chi-Sing Leung.Young Gilbert H,John Sum,et al.On the Regularization of forgetting Recursive Least Square[J]. IEEE Trans.on NeuralNetworks, 1999, 10: 1482-1486.
  • 4Chi-Sing Leung, Ah-Chung Tsoi,Lai Wan Chan.Two Regularization for Recursive Least squared Algorithms in Feed forward Multiayered Neural networds[J].IEEE Trans.on Neural networks,2001,12:1333-1340.
  • 5Singhal S, Wu L. Training Feedforward networks with the Extended Kalman Filter[A].In Proc.IEEE Int.Conf.Acoust.,Speed,Signal Processing,Glasgow,U.K.,1989. 1187-1190.
  • 6shah S, Palmieri F, Datum M. Optimal Filtering Algorithm for Fast Learning in Feedforward Neural Networks[J]. Neural Networks,1992,5:779-787.
  • 7Octavian Stan,Edward Kamen.A Local Linearized Least Squares Algorithm forTraining Feedforward Neural Networks[J].IEEE Trans. on Neural Networks,2000, 11: 487-495.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部