期刊文献+

相联规则的粗熵挖掘方法及其在肇事逃逸侦破中的应用 被引量:1

Mining Association Rule on Rough Entropy Basis in Detecting Escapes from Traffic Accidents
下载PDF
导出
摘要 针对传统数据挖掘算法在处理包含不确定性因素的多源信息场景中存在的因掺杂额外的人为因素而导致误差的缺陷,提出了一种基于粗糙熵的相联规则的挖掘方法,并给出了该方法的评析途径·将研究的方法应用于公安系统的交通肇事逃逸案的侦破中,从历史数据中挖掘出了相联规则,为公安系统对交通肇事逃逸案的侦破提供了一种高效和实用的手段·应用范例验证了该方法的有效性· Traditional data mining algorithms have unavoidably errors arising from additional man-made uncertain factors in dealing with multi-source information. A new mining method called association rule is therefore proposed basis in view of rough set theory, with another method specially designed to assess it. Method from historical data of the crimes escaping from traffic accidents in a designed way, the association rules will provide an efficient and practical means for the police to detect the crimes escaping from traffic accidents. Some applications have exemplified the effectiveness of the method proposed.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第10期938-941,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(辽科发[2001]113号).
关键词 相联规则 粗糙熵 数据挖掘 交通肇事 逃逸侦破 association rule rough entropy data mining traffic accident escape detection
  • 相关文献

参考文献9

  • 1Waltz E, Linas. Multisensor data fusion[M]. Norwood: Artech House, 1991.101-105.
  • 2Hu J, Nelson D E, Sturtz K. Reduct generation in information system[J]. Bulletin of International Rough Set Society, 1999,3(1/2):19-22.
  • 3Choubey S K, Deougun J S, Raghavan V V, et al. A comparison of feature selection algorithm in the context of rough classifiers[A]. 5th IEEE Int Conf Fuzzy Systems[C]. New Orleans: Heart Xpalde, 1995.1122-1128.
  • 4Nguyen X T. Threat assessment in tactical airborne environments[A]. Proceedings of the Fifth International Conference on Information Fusion[C]. Sunnyvale: Int Soc Information Fusion, 2002.1300-1307.
  • 5Kent R E. Rough concept analysis[A]. Rough Sets, and Fuzzy Sets and Knowledge Discovery (RSKD'99)[C]. London: Springer Verlag, 1999.248-255.
  • 6Guan J W. Rough computational methods for information system[J]. Artificial Intelligence, 1999,105:77-103.
  • 7韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 8Kohavi R, Frasca B. Useful feature subsets and rough set reducts[A]. Proc on RSSC94[C]. NY:Spri Murt, 1994.200-244.
  • 9王大玲,于戈,鲍玉斌,王国仁.一种基于关联性度量的决策树分类方法[J].东北大学学报(自然科学版),2001,22(5):481-484. 被引量:11

二级参考文献4

  • 1Michael S 张立昂等(译).计算理论导引[M].北京:机械工业出版社,2000..
  • 2Wang D L,16th World Computer Congress 2000 on Intelligent Information Processing,2000年,578页
  • 3张立昂(译),计算理论导引,2000年
  • 4王大玲,于戈,鲍玉斌,王国仁,刘斌武.基于概念层次树的数据挖掘算法的研究与实现[J].计算机科学,2001,28(6):88-91. 被引量:12

共引文献71

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部