摘要
针对传统数据挖掘算法在处理包含不确定性因素的多源信息场景中存在的因掺杂额外的人为因素而导致误差的缺陷,提出了一种基于粗糙熵的相联规则的挖掘方法,并给出了该方法的评析途径·将研究的方法应用于公安系统的交通肇事逃逸案的侦破中,从历史数据中挖掘出了相联规则,为公安系统对交通肇事逃逸案的侦破提供了一种高效和实用的手段·应用范例验证了该方法的有效性·
Traditional data mining algorithms have unavoidably errors arising from additional man-made uncertain factors in dealing with multi-source information. A new mining method called association rule is therefore proposed basis in view of rough set theory, with another method specially designed to assess it. Method from historical data of the crimes escaping from traffic accidents in a designed way, the association rules will provide an efficient and practical means for the police to detect the crimes escaping from traffic accidents. Some applications have exemplified the effectiveness of the method proposed.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第10期938-941,共4页
Journal of Northeastern University(Natural Science)
基金
辽宁省自然科学基金资助项目(辽科发[2001]113号).
关键词
相联规则
粗糙熵
数据挖掘
交通肇事
逃逸侦破
association rule
rough entropy
data mining
traffic accident
escape detection