摘要
Asynchronous simulated moving bed chromatography (ASMBC), known also as the 'VARICOL' process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A detailed model of ASMBC, taking account of non-linear competitive isotherms, mass transfer parameters, and complex port switching schedule parameters, was developed to simulate the complex dynamics of ASMBC.The simulated performance is in close agreement with the experimental data of chiral separation reported in the literature. The simulation results show that ASMBC can achieve the performance similar to SMBC with fewer columns and can achieve better performance than SMBC with the same total column number. All design and operation parameters can be chosen correctly by numerical simulation. This detailed ASMBC model and the numerical technique are useful for design, operation, optimization and scale-up of ASMBC.
Asynchronous simulated moving bed chromatography (ASMBC), known also as the 'VARICOL' process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A detailed model of ASMBC, taking account of non-linear competitive isotherms, mass transfer parameters, and complex port switching schedule parameters, was developed to simulate the complex dynamics of ASMBC. The simulated performance is in close agreement with the experimental data of chiral separation reported in the literature. The simulation results show that ASMBC can achieve the performance similar to SMBC with fewer columns and can achieve better performance than SMBC with the same total column number. All design and operation parameters can be chosen correctly by numerical simulation. This detailed ASMBC model and the numerical technique are useful for design, operation, optimization and scale-up of ASMBC.
基金
Supported by the National Natural Science Foundation of China (No. 20206027), the Natural Science Foundation of Zhejiang Province (No. 202046)
the National 973 Program of China (No. 2002CB312200).