期刊文献+

柔性悬臂梁非线性非平面运动的多脉冲轨道分析

MULTI-PULSE ORBITS IN NONLINEAR NON-PLANAR MOTION OF A CANTILEVER BEAM
下载PDF
导出
摘要 首先建立了柔性悬臂梁非线性非平面运动的偏微分方程;然后运用Galerkin和多尺度方法得到平均方程。并利用规范形理论进一步将方程化简;最后用能量相位法求出多脉冲跳跃的能量函数序列,Dynamics软件数值计算表明:在系统中确实存在着由多脉冲跳跃而导致的Smale马蹄型混沌. First we formulated a set of integral-partial differential governing equations,which describes the non-linear non-planar oscillations of a cantilever beam. Then by applying the Galerkin procedure and the multi-scale method, we obtained the averaged equations; From the partial differential governing equations and from the averaged equation and by using the theory of normal form,we found the explicit formulas of normal form. Based on the normal form obtained above, the dissipative version of the energy-phrase method was utilized to analyze the multi-pulse global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam,which predicted that there are some multi-pulse Shilnikov type orbits. The numerical simulations shows that the multi-pulse Shilnikov type orbits do exist in the nonlinear nonplanar oscillations of the cantilever beam.
作者 姚明辉 张伟
出处 《动力学与控制学报》 2004年第2期11-14,共4页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10372008)北京市自然科学基金资助项目(3032006)。~~
关键词 非线性动力系统 混沌动力学 柔性悬臂梁 多脉冲轨道分析 cantilever beam, multi-pulse Shilnikov orbits, nonlinear non-planar oscillations, chaotic dynamics
  • 相关文献

参考文献8

  • 1[1]Crespo da Silva MRM,Glynn CC.Nonlinear flexuralflexural torsional dynamics of inextensional beams,I.Equation of motion,Journal of Structural Mechanics,1978,6:437~448
  • 2[2]Crespo da Silva MRM,Glynn CC.Nonlinear flexuralflexural torsional dynamics of inextensional beams,Ⅱ.Forced motions.Journal of Structural Mechanics,1978,6:449~461
  • 3[3]Nayfeh AH,Pai PF.Nonqinear non-planar parametric responses of an inextensional beam.International Journal of Non-linear Mechanics,1989,24:139~ 158
  • 4[4]Pai PF,Nayfeh AH.Non-linear non-planar oscillations of a cantilever beam under lateral base excitations.International Journal of Non-linear Mechanics,1990,24:455~474
  • 5[5]Wiggins S.Global Bifurcations and Chaos-Analytical Methods.New York,Berlin:Springer-Verlag,1988.171~474
  • 6[6]Haller G,Wiggins S.Orbits homoclinic to resonance:the Hamiltonian.Physica D,1993,66:298~346
  • 7[7]Haller G,Wiggins S.Multi pulse jumping orbits and homoclinic trees in a modal truncation of the dampedforced nonlinear Schrodinger equation.Physica D,1995,85:311~347
  • 8[8]Haller G.Chaos Near resonance.New York,Berlin:Springer-Verlag 1999.1 ~ 176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部