期刊文献+

表面修饰的Q态纳米CdS的荧光性能研究 被引量:8

Fluorescence Properties of CdS Q-Nanoparticles Subjected to Proper Surface Modification
下载PDF
导出
摘要 以硫醇为表面修饰剂 ,通过控制硫醇与Cd2 + 的比例 ,得到性能稳定的Q CdS ,而后将Q CdS与聚合物通过共混复合成膜 .通过荧光光谱研究了硫醇和聚合物对Q CdS的表面修饰作用 ,研究发现硫醇的长碳链有效阻止了CdS粒子间的团聚 ,碳链的增加导致Q CdS稳定性的增强 ,Q CdS的激子发射峰强度增大 ,且这种表面修饰效应随硫醇加入量的增大而增强 ,在一定硫醇加入量时的激子荧光发射强度达到最大 .由于介电局域效应 ,聚合物的加入使Q CdS的表面态荧光发光强度呈数量级增大 .另一方面 ,随着聚合物加入量的增加又会导致Q CdS的表面钝化 ,缺陷减小 ,表面态荧光发射峰相对减弱 。 CdS Q-nanoparticles were obtained by using n-octylthiol or dodecyl mercaptan as surface modifier, and Q-CdS/polymer nanocomposite films were gotten by mixing US Q-nanoparticles with polymer. Surface modification of Q-CdS with mercaptan and polymer was studied by fluorescent spectra. It was found that long carbon chain of mercaptan could effectively prevent the Q-CdS from reuniting and strengthen the stability of Q-CdS. The intensity of exciton emission peak (420 nm) in Q-CdS was increased as the carbon chain of mercaptan became longer. As the ratio of mercaptan to Cd2+ was changed, the intensity of exciton emission peak was also changed and the strongest emission intensity was gotten at certain ratio of mercaptan to Cd2+. Due to the dielectric local effect the intensity of surface emission peak (550 nm) in Q-CdS became 10 times stronger with the dispersion of Q-CdS nanoparticles into polymer than that of the single CdS Q-nanoparticle solution. On the other hand, with increase of the polymer content the intensity of surface emission peak in Q-CdS became to decrease reversely. Correspondingly the exciton emission peak began to appear and was gradually strengthened. It is because the polymer passivated the surface of Q-CdS and reduced the surface defect.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2004年第16期1514-1518,共5页 Acta Chimica Sinica
基金 广东省自然科学基金 (No.990 4 63)资助项目
关键词 表面修饰 Q态硫化镉纳米粒子 荧光性能 硫醇 聚合物 CdS Q-nanoparticle surface modification mercaptan fluorescence polymer
  • 相关文献

参考文献14

  • 1Alivisatos, P. Science 1996, 271, 933.
  • 2Chen, D. W.; Wang, S. H. Sci. China, Ser. B 1996, 39,645.
  • 3Soloviev, V. N.; Eichhofer, A.; Fenske, D. J. Am. Chem.Soc. 2001, 123, 2354.
  • 4Yang, C. S.; Awschalom, D. D.; Stucky, G. D. Chem.Mater. 2002, 14, 1277.
  • 5Zhang, J. G.; Coombs, N.; Kumacheva, E. J. Am. Chem.Soc. 2002, 124, 14512.
  • 6Potapova, I.; Meuk, R.; Prehl, S. J. Am. Chem. Soc. 2003,125, 320.
  • 7Zhang, W. G.; Zhong, Y.; Fan, J.; Sun, S. Q.; Tong, N.;Tan, M. Y.; Wu, L. M. Sci. China, Ser. B 2003, 46, 196.
  • 8Wang, Y.; Suna, A.; Mchugh, J. J. Chem. Phys. 1990, 92,6927.
  • 9Sapra, S.; Nanda, J.; Sarma, D. D. Chem. Commun. 2001,2188.
  • 10Praceen, T.; Parinda, V.; Pushan, A. Mater. Lett. 2002, 54,343.

同被引文献73

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部