期刊文献+

基于神经网络的创造性计算模型的构建 被引量:3

Associative Hopfield Neural Networks and Establishing Model of Intuition
下载PDF
导出
摘要 根据神经网络和思维科学的理论,研究了逻辑、直觉以及创造性思维的模拟方法。逻辑思维采用了神经网络的BP算法来实现,直觉思维采用了Hopfield神经网络以及交叉变异等实现方法,论述了变异联想在直觉产生中的重要作用,并且建立了模拟直觉的计算模型。采用直觉与逻辑互补构成创造性思维的观点,构建了创造性思维的认知与计算模型,给出了创造性思维模型的计算实例。 About associative Hopfield neural networks based on Hebb learning law and the existing problem,the necessary and sufficient conditions of distinguishing prototype stability were put forward and all theorems and deductions have been proved.According to the basic theory of Hopfield neural networks,the process of intuition producing is described.The associative Hopfield model sets up an associative bridge between experience and intuition.The Hebb learning law realizes the process of experience accumulating,and the models of cross and variation vividly simulate the process that the thinking of human brain mixes together and makes a sudden change,which first establish the calculating model and put forward the calculating formula for intuition producing.Finally,an example of generating fractal graphs is given to verify the model.
出处 《计算机应用研究》 CSCD 北大核心 2004年第9期12-15,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2001AA412011) 国家自然科学基金资助项目(60274016)
关键词 HOPFIELD神经网络 逻辑 直觉 神经网络 交叉变异 Hopfield Neural Networks Logic Intuition Neural Networks Grossover and Mutation
  • 相关文献

参考文献19

  • 1Nigel Cross.Descriptive Models of Creative Design:Application to an Example[J].Design Studies,1997,18:427-455.
  • 2John S Gero.Computational Models of Innovative and Creative Design Processes[J].Technological Forecasting and Social Change,2000,64:183-196.
  • 3V V Kryssanov,et al.Understanding Design Fundamentals:How Synthesis and Analysis Drive Creativity,Resulting in Emergence[J].Artificial Intelligence in Engineering,2001,15:329-342.
  • 4Kees Dorst,Nigel Cross.Creativity in the Design Process;Co-evolution of Problem-solution[J].Design Studies,2001,22:425-437.
  • 5Koichi Hori.Concept Space Connected to Knowledge Processing for Supporting Creative Design[J].Knowledge-based Systems,1997,(10):29-35.
  • 6Chiara Ghidini,Fausto Giunchiglia.Local Models Semantics,or Contextual Reasoning=Locality+Compatibility[J].Artificial Intelligence,2001,127:221-259.
  • 7R Cooper,et al.A Systematic Methodology for Cognitive Modeling[J].Artificial Intelligence,1996,85:3-44.
  • 8刘清,郑非,江娟,刘斓.带Rough相等关系词的Rough逻辑系统及其推理[J].计算机学报,2003,26(1):39-44. 被引量:3
  • 9H A Simon.Explaining Ineffable:AI on Intuition,Insight and Inspiration Topics[C].Proc.of IJCAI-95,1995.
  • 10Ronald A Finke.Imagery,Creative,and Emergent Structure[J].Consciousness and Cognition,1996,(5):381-393.

二级参考文献13

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 2黄琳.系统与控制理论中的线性代数[M].北京:科学出版社,1986(第5章)..
  • 3罗家洪.矩阵分析引论[M].广州:华南理工大学出版社,1993..
  • 4[1]Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer: Academic Publishers, 1992
  • 5[2]Chang C L, Lee R C T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1973
  • 6[4]Banerjee M, Chakraborty M K. Rough algebra, Institute of Computer Science, Warsaw University of Technology, Warsaw: ICS Research Report 47/93, 1993
  • 7[5]Stepaniuk J. Rough relations and logics. In: Polkowsk L,Skowron A eds. Rough Sets in Knowledge Discover I, Heideherg:Physica Verlag, 1998, 248~260
  • 8[6]Liu Q. λ-Level rough equality relation and the inference of rough paramodulation. In: Ziarko W, Yao Y Y eds. Lecture Notes in Artificial Intelligence 2005. Berlin: Springer-Verlag, 2001,462~469
  • 9[7]Lin T Y, Liu Q. First order rough logic Ⅰ: Approximate reasoning via rough sets. Fundamenta Informaticae, 1996,27(2~3):137~154
  • 10[8]Liu Q. The resolution for rough proposotional logic with lower (L)and upper(H) approximate operators. In:Zhong N, Skow ron A, Ohsuga S eds. Lecture Notes Artificial Intelligence 1711. Berlin:Springer-Verlag, 1999,352~356

共引文献8

同被引文献38

  • 1牟喜斌,邹开其.模糊聚类神经网络的死点问题[J].模糊系统与数学,2004,18(z1):228-232. 被引量:1
  • 2牛晓波,张亚武,宋旭峰,常玉红.一体化、大集中水电生产管理信息系统信息互动服务平台建设与应用[J].水电自动化与大坝监测,2013,37(6):67-69. 被引量:1
  • 3陈建勤,吕剑虹,陈来九.模糊控制系统的闭环模型及稳定性分析[J].自动化学报,1994,20(1):1-9. 被引量:27
  • 4[5]Gupta M M,et al.Controllability of fuzzy control systems.IEEE Trans Syst Man and Cybern,1986; 16(4):576-582
  • 5[6]Takagi T,Sugeno M.Fuzzy identification of system and its applications to modeling and control.IEEE Trans Syst Man and Cybern,1985; (15):116-132
  • 6[7]Tanaka K,Sugeno M.Stability analysis and design of fuzzy control systems.Fuzzy Sets and Systems,1992 ;45:135-156
  • 7[8]Won Chul Kim,et al.Stability analysis and stabilization of fuzzy state space models.Fuzzy Sets and Systems,1995 ;71:131-142
  • 8[11]Zou Kaiqi.Fuzzy inference neural network system and its application.Knowledge Based System,Special issue,submitted,2005
  • 9[14]Zou Kaiqi,Fuzzy normal proposition logic systems.The 4th World Congress on Intelligent Control and Automation,(WCICA'02)IEEE Catalog Number:02EX527,2002:1630-1633
  • 10[17]Zou Kaiqi.Fuzzy decision support systems and its application.Advances in Systems Science and Application,2003 ;3(1):52-54

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部