期刊文献+

锂离子电池纳米负极材料的研究和开发 被引量:3

Research & Development on Nano Anode Materialsfor Lithium Ion Batteries
原文传递
导出
摘要 综述了纳米材料在负极材料方面的最新研究和开发进展,主要包括纳米金属及纳米合金、纳米氧化物、碳纳米管、具有纳米孔结构的无定形炭材料和天然石墨.由于纳米材料的特有性能,它们的可逆容量均高于目前商品化的负极材料.纳米合金负极材料的实业化存在问题,特别是循环稳定性.碳纳米管则由于制备和纯化,成本过高,规模化生产不容易实施,同时理论方面也有待于进一步的研究,以期提高其电化学性能.具有纳米孔的无定形炭材料的制备温度低,而且容量也比较高,但是对于产业化而言,循环性能和电压滞后现象有待于改进.具有纳米孔的天然石墨负极材料不仅容量高、制备比较简单、成本低,而且具有良好的循环性能,可望达到产业化的要求. Recent research and development of nanomaterials for anode of lithium ion batteries has been reviewed. These materials include nano alloys, nano oxides, carbon nanotubes and natural graphite with nanopores. Due to the unique characteristics of nano materials, all of them show a reversible capacity higher than that of the commercial pro-(ducts). However, practical application of nano alloys still needs further research especially on the improvement of cycling performance. The application of carbon nanotubes is still limited owning to the high cost of preparation, difficulty in scale-up production. Moreover, further theoretic study is needed in order to improve their electrochemical performance. In the case of amorphous carbonaceous materials with nanopores, their preparation temperature is low and reversible capacity is high, but their cycling and voltage hysteresis are needed to improve. As to natural graphite with nanopores, its preparation can easily be realized and cost is low, it can meet the requirements for industrialization due to good electrochemical performance including reversible capacity and cycling.
机构地区 复旦大学化学系
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期571-579,共9页 Journal of Fudan University:Natural Science
基金 国家自然科学基金重点项目(20333040) 上海市科委资助项目(0352nm079).
关键词 锂离子电池 纳米负极材料 纳米孔 天然石墨 纳米合金 纳米复合物 lithium ion battery anode material nano particle nanopore natural graphite
  • 相关文献

参考文献24

  • 1Whitehead A, Ellioft J, Owen J. Nanostructured tin for use as a negative electrode material in Li-ion batteries [J]. J Power Sources, 1999, 81-82: 33-38.
  • 2Yang J, Takeda Y, Imanishi N, et al. Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries [J]. J Electrochem Soc, 1999, 146: 4009-4013.
  • 3Yang J, Takeda Y, Imanishi N, et al. Study of the cycling performance of finely dispersed lithium alloy composite electrodes under high Li-utilization [J]. J Power Sources, 1999, 79: 220-224.
  • 4Li H, Huang X, Chen L, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries [J]. Electrochem Solid-State Lett, 1999, 2: 547-549.
  • 5Li H, Huang X, Chen L, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature [J]. Solid State Ionics, 2000, 135: 181-191.
  • 6Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries [J]. J Power Sources, 1999, 81/82: 233-236.
  • 7Jun H, Park M, Yoon Y, et al. Amorphous silicon anode for lithium-ion rechargeable batteries [J]. J Power Sources, 2003, 115: 346-351.
  • 8Kim I, Kumta P N, Blomgren G E. Si/TiN nanocomposites novel anode materials for Li-ion batteries [J]. Electrochem Solid-State Lett, 2000, 3: 493-496.
  • 9Hwang S, Lee H, Jang S, et al. Lithium insertion in SiAg powders produced by mechanical alloying [J]. Electrochem Solid-State Lett, 2001, 4: A97-A100.
  • 10Wang C S, Wu G T, Zhang X B, et al. Lithium insertion in carbon-silicon composite materials produced by mechanical milling [J]. J Electrochem Soc, 1998, 145: 2751-2758.

同被引文献58

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部