期刊文献+

连续函数超空间 被引量:1

Hyperspaces of Continuous Functions
下载PDF
导出
摘要 基于空间X到空间Y的连续函数族作为乘积空间X×Y的闭子集组成的超空间CL(X×Y)的子空间 ,在限制Y为Hilbert方体Q时 ,得到连续函数超空间C(X ,Q)同胚于Q的伪内部s;在限制X为单位闭区间I时 ,考虑连续函数超空间C(I,Y)在CL(I×Y)中的闭包 ,得到其元素到Y的投影是连续统 ,且投影随I中的点连续变化 ,并举例说明了即使X为单位圆盘 ,上述第二个结论也不能成立 . Let X and Y be spaces.We use CL(X×Y)to denote the hyperspace of all non-empty closed subsets in product space X×Y and C(X,Y)which can be regarded as the subspace of CL(X×Y).This paper studied under the fixed conditions of X and Y the respective and relative topological structures of C(X,Y),and the closures of C(X,Y) and CL(X×Y).
机构地区 汕头大学数学系
出处 《汕头大学学报(自然科学版)》 2004年第3期3-8,32,共7页 Journal of Shantou University:Natural Science Edition
基金 国家自然科学基金 (NO :1 0 1 71 0 1 3 )
关键词 连续函数 超空间 连续统 HAUSDORFF度量 Hi]bert方体 上半连续 无限维拓扑学 hyperspaces continuum Hausdorff metric Hilbert cube upper-semi-continuous
  • 相关文献

参考文献8

  • 1[1]Curtis D W, Sehori R M. Hyperspaces of Peano continua are Hilbert cubes[J]. Fund. Math, 1978, 101:19 ~ 38.
  • 2[2]Wojdysawski M. Retractes absoulus et hyperespaces des continus[J]. Fund. Math, 1939, 32: 184~ 192.
  • 3[3]van Mill J. Infinite-Dimensional Topology[M]. Amsterdam: Elsevier Sci. Publ. B. V., 1989. 381~386.
  • 4[4]Anderson R D. Hilbert space is homeomorphic tocountable infinite product of line[J]. Bull. Amer. Math.Soc., 1966, 72: 515~519.
  • 5[5]Kadec M I. On topological equivalence of separable Banach spaces[J]. Doke, Akad, Nauk SSSR(N.S.),1966, 167: 23~25(inRussian); English traslation: Soviet Math. Dokl, 1966, 7: 319~322.
  • 6[6]Fedorchuk V V. Completions of spaces of functions on compact spaces with respect to the Hausdorff uniformity[J]. Trudy Sem. Petrovsk, 1995, 18: 213~ 235(in Russian); English translation: J. Math. Sci.,1996, 80: 2118~2129.
  • 7[7]Salai K, Ue hara S. A Hilbert cube compactification of the Banach spoce of continuous functions[ J]. Topology Appl, 1999, 92: 107 ~ 118.
  • 8[9]Sakai K. The space of cross sections of a bundle[J]. Proc. Amer. Math. Soc., 1988, 103: 956~960.

同被引文献7

  • 1CHAPMAN T A. Dense sigma- compact subsets of infinite- dimensional manifolds[J]. Trans Amer Math Soc, 1971, 154 : 399-426.
  • 2DIJKSTRA J J, VAN MILL J. Infinite- dimensional topology, Recent Progrms in General Topology Ⅱ [ M]. Amsterdam: North - Holland Publishing Company, 2002.115 - 130.
  • 3FEDORCHUK V V. Completions of spaces of functions on compact spaces with respect to the Hausdorff uniformitiy[J]. Trudy Sem Petrovsk, 1995,18 : 213-235.
  • 4SAKAI K. The completions of metric ANR's and homotopy dense subsets[J ]. J Math Soc Japan, 2000,52.835-846.
  • 5SAKAI K, UEHARA S. A Hilbert cube compactification of the Banach space of continuous functions[J]. Topology Appl, 1999,92:107-118.
  • 6TORUN'CZYK H. On CE- images of the Hilbert cube and characterizations of Q- manifolds[J]. Fund Math, 1980, 106: 31-40.
  • 7TOURUN' CZYK H. Characterizing Hilbert space topology[ J ]. Fund Mat h, 1981,111 : 247-262.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部