摘要
证明了周期方程f(4)+K2f''+K1f'+(ez+K0)f=0具有一个有限零点收敛指数的解的必要条件是 ,且满足某一(k+1)×(k+1)行列式条件,其中k是一个非负整数.其次得到这种解的明显表示.进一步,对于四阶周期方程证明了CHIANGYikman和WANG Shuipei的一个猜想.
It is verified that the necessary condition for the periodic equation f(4)+f2f'+K1f'+ (ez+ K0)f = 0 to adimit a solution with finite exponent of convergence of zeros is
where k is a nonnegative integer satisfying some
(k + l)×(k+l) determinant condition. An explicit representation for such a solution is obtained. Moreover, a conjecture of Chiang Yikman and Wang Shuipei for a fourth order periodic equation is proved.
出处
《华南师范大学学报(自然科学版)》
CAS
2004年第3期11-15,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(19971029)
关键词
周期线性微分方程
复振荡
周期系数
零点收敛指数
linear differential equation
periodic coefficients
exponent of convergence of zeros