期刊文献+

一类时滞双曲型微分方程解的振动性 被引量:1

OSCILLATION FOR SOLUTIONS OF CERTAIN DELAY HYPERBOLIC DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 利用广义Riccati变换 ,建立了下列时滞双曲型微分方程 2 t2 u(x ,t) =a(t)Δu(x ,t) + sk =1ak(t)Δu(x ,t- ρk) - mj =1qj(x,t)u(x,t-σj)解的振动的若干充分条件 ,其中 (x ,t)∈Ω× [0 ,∞ )≡G ,Ω是RN中具有逐片光滑边界 Ω的有界区域 ,Δu(x ,t) = Nr=1 2 u(x ,t) x2r. By using a generalized Riccati transformation, some sufficient conditions are established for the oscillation of solutions of delay hyperbolic differential equations of the form ~2 t^2u(x,t) =a(t)Δu(x,t)+sk=1a_k(t)Δ u(x,t-ρ_k)-mj=1q_j(x,t)u(x,t-σ_j), where (x,t)∈Ω×[0,∞)≡G, Ω is a bounded domain in R^N with a piecewise smooth boundary Ω and Δ is the Laplacian in Euclidean N-space R^N.
作者 盛卫红
机构地区 滨州学院数学系
出处 《曲阜师范大学学报(自然科学版)》 CAS 2004年第4期33-36,共4页 Journal of Qufu Normal University(Natural Science)
基金 山东省教育厅科技计划项目 ( 0 3P5 3 )
关键词 时滞 双曲型微分方程 振动性 delay hyperbolic differential equation oscillation
  • 相关文献

参考文献9

  • 1Wu Jian-hong. Theory and Applications of Partial Functional Differential Equations [M]. New York:Springer-Verlag, 1996.
  • 2Fu Xi-lin, Zhuang Wan. Oscillation of certain neutral delay parabolic equations [J]. J Math Anal Appl, 1995,191:473~489.
  • 3崔宝同,俞元洪,林诗仲.具有时滞的双曲型微分方程解的振动性[J].应用数学学报,1996,19(1):80-88. 被引量:76
  • 4李伟年.中立型时滞抛物方程解振动的充要条件[J].工科数学,1998,14(4):19-21. 被引量:9
  • 5Li Wei-nian, Cui Bao-tong. Oscillation of solutions of partial differential equations with functional arguments [J]. Nihonkai Math J, 1998,9:205~212.
  • 6Li Wei-nian, Cui Bao-tong. A necessary and sufficient condition for oscillation of parabolic equations of neutral type [J]. 应用数学, 1999, 12(1):50~53.
  • 7Li Wei-nian. Oscillation properties for systems of hyperbolic differential equations of neutral type [J]. J Math Anal Appl, 2000, 248:369~384.
  • 8Li Wei-nian, Meng Fan-wei. Oscillation for systems of neutral partial differential equations with continuous distributed deviating arguments [J]. Demonstratio Math, 2001, 34:619~633.
  • 9Li Wei-nian, Meng Fan-wei. Forced oscillation for certain systems of hyperbolic differential equations [J]. Appl Math Comput, 2003, 141:313~320.

二级参考文献2

  • 1崔宝同,J Toyama Univ,1990年,13卷,1页
  • 2Wei Junjie,Ann of Diff Eqs,1988年,4卷,473页

共引文献80

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部