期刊文献+

基于粗糙神经网络的歼击机操纵面智能故障诊断 被引量:6

Intelligent Fault Diagnosis of Fighter Control Surfaces Based on Rough Neural Network
下载PDF
导出
摘要 提出了一种基于粗糙神经网络的歼击机操纵面故障诊断方法 .给出并证明了可利用粗集方法对故障信息进行快速特征提取的方法 ,用其作为神经网络的前置系统进行信息预处理 ,减少了所需样本数目 ,从而简化了神经网络结构 ,减少了网络训练时间 ,并且充分利用了神经网络容错及抗干扰能力 ,有效地降低了故障诊断中的误报率和漏报率 .该方法可以进行组合故障的诊断 ,且具有较好的鲁棒性 . A fault diagnosis method for the fighter control surfaces is presented, which is based on rough neural network. The feature extraction based on the rough set method is given and proven, and can be utilized to pre process the fault information. Therefore, the needed training samples can be reduced, the neural network structure can be simplified, and the training time of the network can be shortened. The method takes full advantage of the neural network’s capability of fault tolerance and anti disturbance, reduces the false alarming rate and omission alarming rate, can diagnose the composed faults and can retain good robustness.
出处 《南京师范大学学报(工程技术版)》 CAS 2004年第3期1-6,共6页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金重点资助项目 ( 60 2 3 40 10 ) 航空科学基金资助项目 ( 0 2E5 2 0 2 5 ) 国防基础科研资助项目 (K160 3 0 60 3 18)
关键词 故障诊断 神经网络 粗集理论 歼击机 fault diagnosis, neural network, rough-set theory, fighter
  • 相关文献

参考文献4

  • 1[1]Arabshahi P, Finley S G, Pham T, et al. An Intelligent Fault Detection and Isolation Architecture for Antenna Arrays[A]. JPL TDA Progress Report,1998.124-132.
  • 2[2]Rahnamai K, Caglayan A K, Allen S M. Detection, Identification and Estimation of Surface Damage/Actuator Failure For High Performance Aircraft[A]. Proc American Control Conference[C]. Atlanta,1988.15-17.
  • 3[3]Guglielmi G, Parisini T, Rossi G. Fault Diagnosis and Neural Networks, A Power Plant Application[J]. Control Engineering Practic,1995,3(5):601-620.
  • 4[4]Pawlak Z. Rough set[J]. International Journal of Information and Computer Science,1982,11(5):341-356.

同被引文献67

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部