摘要
针对具有时滞的双重积分对象,提出了两种新颖的二自由度控制结构.对于给定点跟踪控制器:一个是采用鲁棒H2最优控制性能指标设计;另一个是采用常规的微分控制器,它们均在对象输入和输出端之间设计相同的负载干扰抑制闭环,通过提出期望的闭环余灵敏度函数的方法来反向确定扰动观测器,并给出了负载干扰抑制闭环保证鲁棒稳定性的充要条件.该方法可以直接用于抑制工业单积分时滞过程中的斜坡型负载干扰信号.仿真实例验证了本方法的优越性.
Two new two-degree-of-freedom control structures were proposed for doubly integrating plants with time delay, in one of which the setpoint tracking controller is designed by using the H2 optimal performance specification and a conventional derivative controller is utilized for the setpoint tracking. Both of them adopt the same closed-loop for disturbance rejection between the plant input and output. By proposing the desired closed-loop complementary sensitivity function the disturbance observer is inversely derived, and meanwhile the sufficient and necessary conditions for holding the closed-loop robust stability are provided. The proposed method can be directly employed to reject the slope type load disturbances for industrial processes with one integrator and time delay. The simulation examples demonstrate the superiority of the proposed method over recent other approaches.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2004年第9期1572-1576,共5页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(60274032)
高校博士点基金项目(20030248040)
上海市科技启明星跟踪项目(04QMH1405)
关键词
控制系统
双重积分
时滞
二自由度
鲁棒稳定性
Closed loop control systems
Control systems
Degrees of freedom (mechanics)
Interference suppression
Optimal systems
Robustness (control systems)