期刊文献+

双重积分时滞对象的最优抗干扰设计 被引量:3

Optimal Disturbance Rejection Design for Doubly Integrating Plants with Time Delay
下载PDF
导出
摘要 针对具有时滞的双重积分对象,提出了两种新颖的二自由度控制结构.对于给定点跟踪控制器:一个是采用鲁棒H2最优控制性能指标设计;另一个是采用常规的微分控制器,它们均在对象输入和输出端之间设计相同的负载干扰抑制闭环,通过提出期望的闭环余灵敏度函数的方法来反向确定扰动观测器,并给出了负载干扰抑制闭环保证鲁棒稳定性的充要条件.该方法可以直接用于抑制工业单积分时滞过程中的斜坡型负载干扰信号.仿真实例验证了本方法的优越性. Two new two-degree-of-freedom control structures were proposed for doubly integrating plants with time delay, in one of which the setpoint tracking controller is designed by using the H2 optimal performance specification and a conventional derivative controller is utilized for the setpoint tracking. Both of them adopt the same closed-loop for disturbance rejection between the plant input and output. By proposing the desired closed-loop complementary sensitivity function the disturbance observer is inversely derived, and meanwhile the sufficient and necessary conditions for holding the closed-loop robust stability are provided. The proposed method can be directly employed to reject the slope type load disturbances for industrial processes with one integrator and time delay. The simulation examples demonstrate the superiority of the proposed method over recent other approaches.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第9期1572-1576,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60274032) 高校博士点基金项目(20030248040) 上海市科技启明星跟踪项目(04QMH1405)
关键词 控制系统 双重积分 时滞 二自由度 鲁棒稳定性 Closed loop control systems Control systems Degrees of freedom (mechanics) Interference suppression Optimal systems Robustness (control systems)
  • 相关文献

参考文献7

  • 1Watkins J, Piper G, Leitner J. Control of time-delayed double integrator systems[A]. Proc of American Control Conference[C]. Denver, USA: IEEE,2001. 1506-1511.
  • 2Rao V G, Berstein D S. Naive control of the double integrator[J]. IEEE Trans on Control System Magazine, 2001, 21(5): 86-97.
  • 3Skogestad S. Simple analytic rules for model reduction and PID controller tuning[J]. Journal of Process Control, 2003, 13(1): 291-309.
  • 4Morari M, Zafiriou E. Robust process control[M].Englewood Cliffs, NY: Prentice Hall, 1989.
  • 5Doyle J C, Francis B A, Tannenbaum A R. Feedback control theory[M]. NY: Macmillan Publishing Company, 1992.
  • 6Majhi S, Atherton D P. Obtaining controller parameters for a new Smith predictor using autotuning[J].Automatica, 2000, 35(4): 1651-1658.
  • 7Matausek M R, Micic A D. On the modified Smith predictor for controlling a process with an integrator and long dead-time[J]. IEEE Trans on Automatic Control, 1999, 44(8): 1603-1606.

共引文献2

同被引文献27

  • 1刘涛,张卫东,顾诞英.化工不稳定时滞过程鲁棒控制的解析设计[J].控制与决策,2005,20(5):575-578. 被引量:6
  • 2王建国,曹广益,史君海.一类非自衡化工过程的最优控制[J].化工自动化及仪表,2006,33(6):23-26. 被引量:2
  • 3Morari M, Zafiriou E. Robust process control[M]. New York: Prentice Hall, 1989.
  • 4Astrom K J,Hanf C C, Lim g C. A new smith predictor for controlling a process with an integrator and long dead-time [J]. IEEE Trans on Automatic Control, 1994, 39(2): 343-345.
  • 5Zhang W D. Quantitative performance design for integrating processes with time delay[J]. Automatica, 1999, 35 (7): 719-723.
  • 6Rao A Seshagiri, Rao V S R, Chidambaram M. Set point weighted modified smith predictor for integrating and double integrating processes with time delay[J]. ISA Trans, 2007, 46(1): 59-71.
  • 7Shamsuzzoha M, Moonyong Lee. Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delay[J]. Chemical Engineering Science, 2008, 63(10): 2717-2731.
  • 8Tan W, Horacio J Marquez, Chen T W. IMC design for unstable processed with time delays [ J]. J of Process Control, 2003, 13(3): 203-213.
  • 9Rao A Seshagir , Chidambaram M. Analytical design of modified smith predictor in a two-degrees-freedom control scheme for second order unstable processes with time delay[J]. ISA Trans, 2008, 47(4): 407-419.
  • 10Lu X, Yang Y S, Wang Q G, et al. A double two- degree-of-freedom control, scheme for improved control of unstable delay processes[J]. J of Process Control, 2005, 5(15): 605-614.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部