1[2]Melda ozdin (e)arpinliogˇlu,Mehmet Ya(e)ar Gündogˇdu.A Critical review on pulsatile pipe flow studies directing towards future research topics[J].Flow Measurement and Instrumentation,2001(12).
2[3]R.S.Scalero , Nazif Tepedelenlioglu. A fast new algorithm for training feedforward neural networks[J]. IEEE Transactions on Signal Processing,1992,40(1).
3[4]H.H.Chen,M.T.Manry and H.Chandrasekaran. A neural network training algorithm utilizing multiple sets of linear equations[J]. Neurocomputing ,1999,25(4).
4[5]Funahashi M J.On the approximate realization of continuouse mapping[J].Neural Network,1989(2).
5[6]ROTH M.Neural network technology for ATR[J].IEEE Trans.Neural Networks, 1990(1).
7HUANG Guangbin, CHEN Lei, SIEW Chee-Kheong. Universal approximation using incremental constructive feedforward networks with random hidden nodes [J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892.
8AMIR F A, ALEXANDER G P. New results on recurrent networks training: Unifying the algorithms and accelerating convergence[J]. IEEE Trans. on Neural Networks, 2000, 11(8): 697-709.
9WANG Yiqun, TANG Yong, JIANG Wanlu, et al. Appraising and improving on the training algorithm of neural network in the soft measurement system of dynamic flow[C]//The Sixth International Conference on Fluid Power Transmission and Control, Hangzhou, China, 2005: 102-108.
10HUANG Guangbin,CHEN Lei,SIEW Chee-Kheong.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Transactions on Neural Networks,2006,17(4):879-892.