期刊文献+

基于小波包和支持向量机的人脸识别 被引量:7

Human Face Recognition Based on Wavelet Package and SVM
下载PDF
导出
摘要 提出了用小波包变换、聚类分析和缩放支持向量机进行人脸识别的方法。首先 ,用小波包对图象进行 2层分解 ,提取每个子频带的能量组成向量为该图象的特征 ;其次 ,对待识别图象进行聚类分析 ,以减少进入支持向量机的样本数 ;然后 ,在特征向量输入支持向量机之前先进行缩放处理 ,以减少运算量和提高识别准确率 ;最后 ,用支持向量集合距离度量进行人脸识别。实验表明 :采用本文的方法 ,识别的正确率可达 98%。 In this paper a human face recognition method using wavelet package, clustering analysis and scaling SVM is presented. First, we use wavelet package to decompose the image for two times, and the feature vector is composite of every sub-band energy. Second, in order to reduce the samples of SVM, the clustering analysis is necessary. Then feature vectors are scaled before they are input to SVM, in order to reduce computation and improve veracity. At last, we use distance measure and SVM to recognize face images. Experiment show that recognition is correct to 98%.
出处 《计算机仿真》 CSCD 2004年第9期131-133,共3页 Computer Simulation
基金 湖南省自然科学基金资助项目 ( 0 3JJY3 10 1)
关键词 小波包变换 支持向量机 人脸识别 聚类分析 图象识别 Wavelet package Clustering analysis SVM
  • 相关文献

参考文献6

二级参考文献19

  • 1[1]Michael J Lyons et al. Automatic Classification of Single Facial Images[J].IEEE Trans PAMI, 1999; 21 ( 12 ): 1357~1362
  • 2[2]Lee T S.Image representation using 2D gabor wavelets[J].IEEE TransOn PAMI, 1996; 18(10) :959~971
  • 3[3]Vladimir N Vapnik.The Nature of Statistical Learning Theory[M].Springer, 1995
  • 4[4]E Osuna,R Freund,F Girosi.Training support vector machines:Anapplication to face detection[C].In:Proceedings of CVPR'97,PuertoRico, 1997
  • 5[5]J Platt. Fast training of support vector machines using sequentialminimal optimization[C].In:B Scholkopf,C J C Burges,A J Smola eds.Advances in Kernel Methods---Support Vector Learning,Cambridge,MA,MIT Press, 1999:185~208
  • 6[6]S S Keerthi,S K Shevade,C Bhattacharyya et al.A Fast IterativeNearest Point Algorithm for Support Vector Machine Classifier Design[R].Technical Report TR-ISL-99-03 Intelligent Systems Lab Dept ofComputer Science and Automation Indian Institute of Science Bangalore, India, 1999
  • 7[7]LibSVM.http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  • 8[8]AT&T Laboratories Cambridge.The Database of Faces.http://www.uk.research.att.com/facedatabase.html
  • 9[9]T Joachims. 11 in: Making large-Scale SVM Learning Practical[C].In:B Scholkopf,C Burges,A Smola ed.Advances in Kernel MethodsSupport Vector Learning,MIT Press,1999
  • 10[10]F Samaria,S Young. HMM based architecture for face identification[J].Imagn and Computer Vision,1994; 12:537~543

共引文献71

同被引文献37

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2刘向东,陈兆乾.基于支持向量机方法的人脸识别研究[J].小型微型计算机系统,2004,25(12):2261-2263. 被引量:6
  • 3徐毅琼,王波,李弼程.基于改进的独立分量分析的人脸识别方法[J].数据采集与处理,2006,21(2):184-187. 被引量:2
  • 4W Y Zhao, R Chellappa, A Rosenfeld and P J Phillips. Face recognition : A literature survey[ J]. ACM Computing Surveys, 2003, 35(4) :399 -458.
  • 5Nello Cristianini, John Shawe - Taylor. An Introduction to Support Vector Machines and Other Kernel -based Learning Methods [ M ]. Cambridge, England, Cambridge University Press, 2000.
  • 6J Weston, C Watkins. Multi- class support vector machines[ R]. Technical Report CSD - TR - 98 - 04 in Royal Holloway University of London, 1998.
  • 7M A Turk, A P Pentland. Face recognition using eigenfaces [ C ]. IEEE Conference on Computer Vision and Pattern Recognition. 1991. 586-591.
  • 8W Y Zhao, R Chellappa. A Rosenfeld and P J Phillips. Face rec- ognition : A literature survey [ J ]. ACM Computing Surveys, 2003, 35 (4) :399-458.
  • 9M S Bartlett, J R Movellan, T J Sejnowski. Face recognition by in- dependent component analysis. Neural Networks[ J] , IEEE Trans- actions on. 2002,13 (6) : 1450-1464.
  • 10N Saito, R Coifman, B Geshwind. Fred Warner. Discriminant fea- ture extraction using empirical probability density estimation and a local basis library [ C ]. Pattern Recognition, 2002, 35 : 2841 - 2852.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部