期刊文献+

人股骨头软骨与半月板黏弹性分析

<title>scoelastic Analysis on Human Femoral Head Cartilage and Meniscus
下载PDF
导出
摘要 为了了解真实人体病态与正常关节软骨组织在力学性能上的差异,做了黏弹性分析实验.对于正常组和病态组的半月板,应力松弛曲线G(t)-1nt的斜率Kt分别是-0.1 17 9和-0.085 6,G(t)的终点值Ge分别是0.525 0和0.571 0.对于正常组和病态组的股骨头软骨,Kr分别是-0.101 4和~0.063 3,Ge分别是0.591 5和0.663 2.对于正常组和病态组的半月板,蠕变曲线J(t)-1nt的斜率Kc分别是0.208 O和0.109 5,J(t)的终点值Je分别是1.953 8和1.493 1.对于正常组和病态组的股骨头软骨,Kc分别是0.167 3和0.120 7,Je分别是1.854 9和1.599 8.病态组标本的应力松弛和蠕变量明显比正常组低,主要原因是胶原纤维变性和蛋白多糖减少. <abstract> order to study the differences in mechemics between normal and abnormal cartilage of human articulation, the authors do the viscoelastic analysis experiment. The stress relaxation and creep test were performed. For normal and abnormal meniscus, the slope of relaxation curve G (t) with In t ATr is -0.1179 and -0.0856, Ge (the value of G(t) at the end) is 0.5250 and 0.5710 respectively. For normal and abnormal cartilage of femoral head, the Kr is -0.101 4 and -0.063 3, Ge is 0.591 5 and 0.6632 respectively. For normal and abnormal meniscus, the Kc (the slope of creep curve J(t) with In t) is 0.208 0 and 0.109 5, Je (the value of J (t) at the end) is 1.953 8 and 1.493 1 respectively. For normal and abnormal cartilage of femoral head, the Kc is 0.167 3 and 0.120 7, Je is 1.854 9 and 1.599 8 respectively. The stress relaxation and creep quantity of abnormal specimens evidently move less than that of normal group. The main reason is collagen degeneration and decrease in proteoglycan.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2004年第3期359-363,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(10072006)。
关键词 人股骨头软骨 人半月板 黏弹性 <keyword>man femoral head cartilage human meniscus viscoelasticity
  • 相关文献

参考文献8

  • 1[1]SETTON L A, ZHU W, MOW V C, et al. The biphasic porovisco-elastic behavior of articular cartilage, role of the surface zone in governing the compressive behavior[J]. Biomech, 1993, 26(4-5): 581-592.
  • 2[2]FREEMAN P M, NATARAJAN R N. Chondrocyte cells respond mechanically to compressive loads[J]. Orthop-Res,1994, 12(3): 311-320.
  • 3[3]THIBAULT M, DOOLE A R, BUSCHMANN M D. Cyclic compression of cartilage/bone explants in titro loads to physical weakening, mechanical breakdown of collagen and release of matrix fragments[J]. Journal of Orthopaedic Research, 2002, 20: 1265-1273.
  • 4[4]QUINN T M, ALLENLLEN R G, SCHALET B J, et al. Matrix and cell injury due to sub-impact loading of adult borine articular cartilage explants: Effect of strain rate and peak stress[J]. Journal of Orthopaedic Research,2001, 19: 242-249.
  • 5[5]NARMONETA D A, WANG J Y, SETTON L A. Swelling induced residual strains in articular cartilage[J].Journal of Biomechanics, 1999, 32: 401-408.
  • 6[6]SHANGALD B F. Repair of large osteochondral defects: Loading-bearing and structural properties of osteochondral repair tissue[J]. The Knee, 1998, 5: 111-117.
  • 7[7]MUKHERJEE N, SARIS D B F, SCHULTZ F M, et al. The enhancement of periostial chondrogenesis in organ cultrue by dynamic fluid pressure[J]. Journal of Orthopaedic Research, 2001, 19: 524-530.
  • 8[8]ZENG Y J, WU W H, YU H M. Silicone implant in augmentation rhinoplasty[J]. Annals of Plastic Surgery, 2002,49(5): 495-499.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部