期刊文献+

大曲率缺口奇异有限元计算模型及其数值分析 被引量:2

A Singular Finite Element Modelling of Blunt Crack Problems and Numerical Analysis
下载PDF
导出
摘要 研究了大曲率缺口的位移场基本理论,构造了一种新的大曲率缺口位移模式;建立含大曲率缺口损伤结构有限元方程和相应的缺口奇异单元;提出了求解大曲率缺口应力与应力强度因子等断裂参量一种的新数值计算方法。算例说明本方法是一种有效的数值计算分析方法,其研究成果对众多的材料破坏试验极有参考价值。 Basic theory of displacement field in the blunt cracks is studied and a new displacement modelling of blunt crack is constructed. A finite element equation with a blunt crack is built, the new singular element at the end of a blunt crack is given and a new method for calculating stress intensity factors of blunt crack problems is presented. Solutions obtained with present method are good in agreement with those of theoretical solutions. With the different selections of the Gauss's points and structural dimensions, the calculating results with the present method are stable, reliable and highly accurate. The present method is easy to use in practical program operation. Numerical examples are given to illustrate the validity of the present method.
出处 《航空学报》 EI CAS CSCD 北大核心 2004年第5期470-472,共3页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(No.10132010 No.10072033) 中国博士后科学基金(No.2003033290)资助项目
关键词 应力强度因子 奇异元 钝裂纹 有限单元法 位移 计算模型 stress intensity factor singular element blunt crack finite element method displacement
  • 相关文献

参考文献9

  • 1[1]Hardiman N J. Elliptical elastic inclusion in an infinite elastic plane[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1954, 7:226-230.
  • 2[2]Eshelby J G. The determination of elastic field of ellipsoidal inclusion, and related problems[A]. Proceeding of the Royal Society, Series A-Mathematical Physical and Engineering Science[C], 1957, A241: 376-396.
  • 3[3]Muskhelishvili N I. Some basic problems of the mathematical theory of elasticitiy[M].Noordhoff, Gronongen,1953.
  • 4[4]England A H. Complex variable methods in Elasticity[M]. New York:Wiley Interscience, 1971.
  • 5[5]Gong S X, Meguid S A. A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear[J]. ASME Journal Applied Mechanics, 1992, 59:S131-S135.
  • 6[6]Thomson R D, Hancock J W. Local stress and strain field near a spherical elastic inclusion in a plastically deforming matrix[J]. Journal of Fracture, 1984, 24:209-228.
  • 7[7]Kuang Z B,Ma F S.The crack tip fields[M]. Xi′an:Xi′an University Publishing House, 2002.
  • 8[8]Brebbia C A, Telles J, Wrobel L. Boundary element techniques-theory and applications in engineering[M].Berlin and NY:Springer, 1984.
  • 9[9]Dong C Y, Cheung Y K, Lo S H. A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J].Computer Methods in Applied Mechanics and Engineering, 2002, 191:3411-3421.

同被引文献13

  • 1曹宗杰,匡震邦.一种新的缺陷压电体奇异准协调单元及其断裂分析[J].航空学报,2006,27(3):403-407. 被引量:3
  • 2匡震邦 马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002..
  • 3Chan S K, Tuba I S, Wilson W K. On the finite element method in linear fracture mechanics[J]. Engineering Fracture Mechanics, 1970, 2: 1- 17.
  • 4Tracey D M. Finite elements for determination of crack tip elastic stress intensity factor[J]. Engineering Fracture Mechanics, 1971, 3 255 - 265.
  • 5Walsh P F. The computation of stress intensity tactors by a special finite element technique[J]. Int J Solids Structure, 1971,7: 1333 - 1342.
  • 6Holston J A. A mixed mode crack tip finite element[J]. Int J Fracture, 1976, 12 (6) : 887 - 899.
  • 7Atluri S N, Kobayashi A S, Nakagaki M. An assumed displacement hybrid finite element model for linear fracture mechanics[J]. Int J of Fracture, 1975, 11 (2): 257-270.
  • 8Benzley S E. Representation of singularities with isoparametric finite elements[J]. Int J for Num Meth in Eng, 1974, 8:537- 545.
  • 9Kuang Z B. The stress field near blunt crack tip and the fracture criterion[J]. Engineering Fracture Mechanics. 1982, 16 (1) : 19- 33.
  • 10Golub G H, Loan C F V. Matrix Computations[M]. The John Hopkins University Press, 1996.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部